These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26290547)

  • 41. Exceptional evolutionary lability of flower-like inflorescences (pseudanthia) in Apiaceae subfamily Apioideae.
    Baczyński J; Sauquet H; Spalik K
    Am J Bot; 2022 Mar; 109(3):437-455. PubMed ID: 35112711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silica bodies in leaves of neotropical Podostemaceae: taxonomic and phylogenetic perspectives.
    da Costa FGCM; Klein DE; Philbrick CT; Bove CP
    Ann Bot; 2018 Dec; 122(7):1187-1201. PubMed ID: 30032254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inflorescence diversification in the "finger millet clade" (Chloridoideae, Poaceae): a comparison of molecular phylogeny and developmental morphology.
    Liu Q; Peterson PM; Columbus JT; Zhao N; Hao G; Zhang D
    Am J Bot; 2007 Jul; 94(7):1230-47. PubMed ID: 21636489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. What makes a fig: insights from a comparative analysis of inflorescence morphogenesis in Moraceae.
    Leite VG; Kjellberg F; Pereira RAS; Teixeira SP
    Ann Bot; 2021 Apr; 127(5):621-631. PubMed ID: 33253383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae.
    Bello MA; Hawkins JA; Rudall PJ
    Ann Bot; 2008 Jun; 101(9):1433, 1491-505. PubMed ID: 18494144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macroevolution of panicoid inflorescences: a history of contingency and order of trait acquisition.
    Reinheimer R; Vegetti AC; Rua GH
    Ann Bot; 2013 Nov; 112(8):1613-28. PubMed ID: 23478945
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developmental morphology of branching flowers in Nymphaea prolifera.
    Grob V; Moline P; Pfeifer E; Novelo AR; Rutishauser R
    J Plant Res; 2006 Nov; 119(6):561-70. PubMed ID: 17021936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence.
    Zhao Y; Zhang T; Broholm SK; Tähtiharju S; Mouhu K; Albert VA; Teeri TH; Elomaa P
    Plant Physiol; 2016 Sep; 172(1):284-96. PubMed ID: 27382139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flower development of Goniorrhachis marginata reveals new insights into the evolution of the florally diverse detarioid legumes.
    Prenner G; Cardoso D
    Ann Bot; 2017 Feb; 119(3):417-432. PubMed ID: 28025284
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution and development of monocot stomata.
    Rudall PJ; Chen ED; Cullen E
    Am J Bot; 2017 Aug; 104(8):1122-1141. PubMed ID: 28794059
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Developmental anatomy of the reproductive shoot in Hydrobryum japonicum (Podostemaceae).
    Katayama N; Koi S; Kato M
    J Plant Res; 2008 Jul; 121(4):417-24. PubMed ID: 18506393
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional anatomy of the ovule in Genlisea with remarks on ovule evolution in Lentibulariaceae.
    Płachno BJ; Swiatek P
    Protoplasma; 2009 Jul; 236(1-4):39-48. PubMed ID: 19437102
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes.
    Ojeda DI; Koenen E; Cervantes S; de la Estrella M; Banguera-Hinestroza E; Janssens SB; Migliore J; Demenou BB; Bruneau A; Forest F; Hardy OJ
    Mol Phylogenet Evol; 2019 Aug; 137():156-167. PubMed ID: 31075505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phylogeny of the non-monophyletic Cayratia Juss. (Vitaceae) and implications for character evolution and biogeography.
    Lu L; Wang W; Chen Z; Wen J
    Mol Phylogenet Evol; 2013 Sep; 68(3):502-15. PubMed ID: 23669013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
    Teisher JK; McKain MR; Schaal BA; Kellogg EA
    Ann Bot; 2017 Nov; 120(5):725-738. PubMed ID: 28645142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphological diversity and genetic regulation of inflorescence abscission zones in grasses.
    Doust AN; Mauro-Herrera M; Francis AD; Shand LC
    Am J Bot; 2014 Oct; 101(10):1759-69. PubMed ID: 25326618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple origins of congested inflorescences in Cyperus s.s. (Cyperaceae): developmental and structural evidence.
    Guarise NJ; Vegetti AC; Pozner R
    Am J Bot; 2012 Aug; 99(8):1276-88. PubMed ID: 22847543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From shoot to leaf: step-wise shifts in meristem and KNOX1 activity correlate with the evolution of a unifoliate body plan in Gesneriaceae.
    Nishii K; Huang BH; Wang CN; Möller M
    Dev Genes Evol; 2017 Jan; 227(1):41-60. PubMed ID: 27928690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Polygamy in Atriplex halimus L. (Chenopodiaceae)].
    Talamali A; Dutuit P; Le Thomas A; Gorenflot R
    C R Acad Sci III; 2001 Feb; 324(2):107-13. PubMed ID: 11280041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and development of flowers and inflorescences in Peraceae and Euphorbiaceae and the evolution of pseudanthia in Malpighiales.
    Gagliardi KB; Cordeiro I; Demarco D
    PLoS One; 2018; 13(10):e0203954. PubMed ID: 30281673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.