These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26290964)

  • 1. Aqueous Redox Chemistry and the Electronic Band Structure of Liquid Water.
    Adriaanse C; Cheng J; Chau V; Sulpizi M; VandeVondele J; Sprik M
    J Phys Chem Lett; 2012 Dec; 3(23):3411-5. PubMed ID: 26290964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous transition-metal cations as impurities in a wide gap oxide: the Cu(2+)/Cu(+) and Ag(2+)/Ag(+) redox couples revisited.
    Liu X; Cheng J; Sprik M
    J Phys Chem B; 2015 Jan; 119(3):1152-63. PubMed ID: 25386900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox potentials and acidity constants from density functional theory based molecular dynamics.
    Cheng J; Liu X; VandeVondele J; Sulpizi M; Sprik M
    Acc Chem Res; 2014 Dec; 47(12):3522-9. PubMed ID: 25365148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.
    Ambrosio F; Miceli G; Pasquarello A
    J Chem Phys; 2015 Dec; 143(24):244508. PubMed ID: 26723693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.
    Opalka D; Pham TA; Sprik M; Galli G
    J Phys Chem B; 2015 Jul; 119(30):9651-60. PubMed ID: 26132076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-ion reorganization free energy of aqueous Ru(bpy)32+/3+ and Ru(H2O)62+/3+ from photoemission spectroscopy and density functional molecular dynamics simulation.
    Seidel R; Faubel M; Winter B; Blumberger J
    J Am Chem Soc; 2009 Nov; 131(44):16127-37. PubMed ID: 19831354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox potentials of aryl derivatives from hybrid functional based first principles molecular dynamics.
    Liu X; Cheng J; Lu X; He M; Wang R
    Phys Chem Chem Phys; 2016 Jun; 18(22):14911-7. PubMed ID: 27189031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Kohn-Sham density of states and band gap of water: from small clusters to liquid water.
    Cabral do Couto P; Estácio SG; Costa Cabral BJ
    J Chem Phys; 2005 Aug; 123(5):054510. PubMed ID: 16108672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand Field Effects on the Aqueous Ru(III)/Ru(II) Redox Couple from an All-Atom Density Functional Theory Perspective.
    Ayala R; Sprik M
    J Chem Theory Comput; 2006 Sep; 2(5):1403-15. PubMed ID: 26626848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy levels and redox properties of aqueous Mn(2+/3+) from photoemission spectroscopy and density functional molecular dynamics simulation.
    Moens J; Seidel R; Geerlings P; Faubel M; Winter B; Blumberger J
    J Phys Chem B; 2010 Jul; 114(28):9173-82. PubMed ID: 20666394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial effects on the band edges of functionalized si surfaces in liquid water.
    Pham TA; Lee D; Schwegler E; Galli G
    J Am Chem Soc; 2014 Dec; 136(49):17071-7. PubMed ID: 25402590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.
    Rybkin VV; VandeVondele J
    J Phys Chem Lett; 2017 Apr; 8(7):1424-1428. PubMed ID: 28296416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of density functionals for nitrogen impurities in ZnO.
    Sakong S; Gutjahr J; Kratzer P
    J Chem Phys; 2013 Jun; 138(23):234702. PubMed ID: 23802971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electron attachment energy of the aqueous hydroxyl radical predicted from the detachment energy of the aqueous hydroxide anion.
    Adriaanse C; Sulpizi M; VandeVondele J; Sprik M
    J Am Chem Soc; 2009 May; 131(17):6046-7. PubMed ID: 19354219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of electronic energy levels at electrochemical interfaces.
    Cheng J; Sprik M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11245-67. PubMed ID: 22806244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure and solvation of copper and silver ions: a theoretical picture of a model aqueous redox reaction.
    Blumberger J; Bernasconi L; Tavernelli I; Vuilleumier R; Sprik M
    J Am Chem Soc; 2004 Mar; 126(12):3928-38. PubMed ID: 15038747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations.
    Fang C; Li WF; Koster RS; Klimeš J; van Blaaderen A; van Huis MA
    Phys Chem Chem Phys; 2015 Jan; 17(1):365-75. PubMed ID: 25388568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronically excited water aggregates and the adiabatic band gap of water.
    Cabral do Couto P; Costa Cabral BJ
    J Chem Phys; 2007 Jan; 126(1):014509. PubMed ID: 17212502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.