These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26291002)

  • 1. Atomic-Resolution Structural Dynamics in Crystalline Proteins from NMR and Molecular Simulation.
    Mollica L; Baias M; Lewandowski JR; Wylie BJ; Sperling LJ; Rienstra CM; Emsley L; Blackledge M
    J Phys Chem Lett; 2012 Dec; 3(23):3657-62. PubMed ID: 26291002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
    Lewandowski JR
    Acc Chem Res; 2013 Sep; 46(9):2018-27. PubMed ID: 23621579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.
    Lamley JM; Lougher MJ; Sass HJ; Rogowski M; Grzesiek S; Lewandowski JR
    Phys Chem Chem Phys; 2015 Sep; 17(34):21997-2008. PubMed ID: 26234369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy.
    Markwick PR; Bouvignies G; Blackledge M
    J Am Chem Soc; 2007 Apr; 129(15):4724-30. PubMed ID: 17375925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.
    Allnér O; Foloppe N; Nilsson L
    J Phys Chem B; 2015 Jan; 119(3):1114-28. PubMed ID: 25350574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo determination of bond orientations and order parameters from residual dipolar couplings with high accuracy.
    Briggman KB; Tolman JR
    J Am Chem Soc; 2003 Aug; 125(34):10164-5. PubMed ID: 12926926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.
    Salmon L; Bouvignies G; Markwick P; Blackledge M
    Biochemistry; 2011 Apr; 50(14):2735-47. PubMed ID: 21388216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state NMR in macromolecular systems: insights on how molecular entities move.
    Hansen MR; Graf R; Spiess HW
    Acc Chem Res; 2013 Sep; 46(9):1996-2007. PubMed ID: 23480021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of NMR relaxation-active motions of a partially folded A-state analogue of ubiquitin.
    Prompers JJ; Scheurer C; Brüschweiler R
    J Mol Biol; 2001 Feb; 305(5):1085-97. PubMed ID: 11162116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone motions of free and pheromone-bound major urinary protein I studied by molecular dynamics simulation.
    Macek P; Novak P; Zídek L; Sklenar V
    J Phys Chem B; 2007 May; 111(20):5731-9. PubMed ID: 17465536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.
    Mack JW; Usha MG; Long J; Griffin RG; Wittebort RJ
    Biopolymers; 2000 Jan; 53(1):9-18. PubMed ID: 10644947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic small amplitude Peptide plane dynamics in proteins from residual dipolar couplings.
    Bernadó P; Blackledge M
    J Am Chem Soc; 2004 Apr; 126(15):4907-20. PubMed ID: 15080696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.
    Haller JD; Schanda P
    J Biomol NMR; 2013 Nov; 57(3):263-80. PubMed ID: 24105432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations.
    Säwén E; Stevensson B; Ostervall J; Maliniak A; Widmalm G
    J Phys Chem B; 2011 Jun; 115(21):7109-21. PubMed ID: 21545157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics.
    Philippopoulos M; Mandel AM; Palmer AG; Lim C
    Proteins; 1997 Aug; 28(4):481-93. PubMed ID: 9261865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping protein conformational energy landscapes using NMR and molecular simulation.
    Guerry P; Mollica L; Blackledge M
    Chemphyschem; 2013 Sep; 14(13):3046-58. PubMed ID: 23703956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.