These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26291076)

  • 1. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.
    Spitz J; Evstrachin A; Zacksenhouse M
    Bioinspir Biomim; 2015 Aug; 10(5):056005. PubMed ID: 26291076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
    Park HW; Kim S
    Bioinspir Biomim; 2015 Mar; 10(2):025003. PubMed ID: 25806404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque-stiffness-controlled dynamic walking with central pattern generators.
    Huang Y; Vanderborght B; Van Ham R; Wang Q
    Biol Cybern; 2014 Dec; 108(6):803-23. PubMed ID: 25128320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biologically based neural system coordinates the joints and legs of a tetrapod.
    Hunt A; Schmidt M; Fischer M; Quinn R
    Bioinspir Biomim; 2015 Sep; 10(5):055004. PubMed ID: 26351756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired design strategies for central pattern generator control in modular robotics.
    Herrero-Carrón F; Rodríguez FB; Varona P
    Bioinspir Biomim; 2011 Mar; 6(1):016006. PubMed ID: 21335644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension and customization of self-stability control in compliant legged systems.
    Ernst M; Geyer H; Blickhan R
    Bioinspir Biomim; 2012 Dec; 7(4):046002. PubMed ID: 22791685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling legs for locomotion-insights from robotics and neurobiology.
    Buschmann T; Ewald A; von Twickel A; Büschges A
    Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of variable-damping control for prosthetic knee based on a simulated biped.
    Zhao J; Berns K; de Souza Baptista R; Bo AP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650364. PubMed ID: 24187183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model.
    Li W; Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Oct; 12(6):065002. PubMed ID: 28748830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable walking with asymmetric legs.
    Merker A; Rummel J; Seyfarth A
    Bioinspir Biomim; 2011 Dec; 6(4):045004. PubMed ID: 22126858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust hopping based on virtual pendulum posture control.
    Sharbafi MA; Maufroy C; Ahmadabadi MN; Yazdanpanah MJ; Seyfarth A
    Bioinspir Biomim; 2013 Sep; 8(3):036002. PubMed ID: 23735558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking with perturbations: a guide for biped humans and robots.
    Duysens J; Forner-Cordero A
    Bioinspir Biomim; 2018 Sep; 13(6):061001. PubMed ID: 30109860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A μ analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments.
    Keshavan J; Gremillion G; Escobar-Alvarez H; Humbert JS
    Bioinspir Biomim; 2014 Jun; 9(2):025011. PubMed ID: 24852145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.