These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26291076)

  • 21. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
    Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ
    Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.
    Vejdani HR; Blum Y; Daley MA; Hurst JW
    Bioinspir Biomim; 2013 Dec; 8(4):046006. PubMed ID: 24166776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-dimensional sagittal plane model of normal human walking.
    Srinivasan S; Raptis IA; Westervelt ER
    J Biomech Eng; 2008 Oct; 130(5):051017. PubMed ID: 19045524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leg-adjustment strategies for stable running in three dimensions.
    Peuker F; Maufroy C; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust control of CPG-based 3D neuromusculoskeletal walking model.
    Kim Y; Tagawa Y; Obinata G; Hase K
    Biol Cybern; 2011 Oct; 105(3-4):269-82. PubMed ID: 22138897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tactile surface classification for limbed robots using a pressure sensitive robot skin.
    Shill JJ; Collins EG; Coyle E; Clark J
    Bioinspir Biomim; 2015 Feb; 10(1):016012. PubMed ID: 25642694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rotary and radial forcing effects on center-of-mass locomotion dynamics.
    Shen ZH; Larson PL; Seipel JE
    Bioinspir Biomim; 2014 Sep; 9(3):036020. PubMed ID: 25162748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An upper-body can improve the stability and efficiency of passive dynamic walking.
    Chyou T; Liddell GF; Paulin MG
    J Theor Biol; 2011 Sep; 285(1):126-35. PubMed ID: 21740916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A physical model of sensorimotor interactions during locomotion.
    Klein TJ; Lewis MA
    J Neural Eng; 2012 Aug; 9(4):046011. PubMed ID: 22766556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control.
    Horchler AD; Daltorio KA; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2015 Feb; 10(2):026001. PubMed ID: 25712192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A survey on CPG-inspired control models and system implementation.
    Yu J; Tan M; Chen J; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):441-56. PubMed ID: 24807442
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.