These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26291166)

  • 1. Habit Learning by Naive Macaques Is Marked by Response Sharpening of Striatal Neurons Representing the Cost and Outcome of Acquired Action Sequences.
    Desrochers TM; Amemori K; Graybiel AM
    Neuron; 2015 Aug; 87(4):853-68. PubMed ID: 26291166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks.
    Fujii N; Graybiel AM
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):9032-7. PubMed ID: 15956185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal habits can develop spontaneously through sensitivity to local cost.
    Desrochers TM; Jin DZ; Goodman ND; Graybiel AM
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20512-7. PubMed ID: 20974967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course of a repetition effect on saccadic reaction time in non-human primates.
    Gore JL; Dorris MC; Munoz DP
    Arch Ital Biol; 2002 Jul; 140(3):203-10. PubMed ID: 12173523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context.
    Apicella P; Deffains M; Ravel S; Legallet E
    Eur J Neurosci; 2009 Aug; 30(3):515-26. PubMed ID: 19656171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trial-to-trial variability of spike response of V1 and saccadic response time.
    Lee J; Kim HR; Lee C
    J Neurophysiol; 2010 Nov; 104(5):2556-72. PubMed ID: 20810695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories.
    Antzoulatos EG; Miller EK
    Neuron; 2011 Jul; 71(2):243-9. PubMed ID: 21791284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal basis for evaluating selected action in the primate striatum.
    Yamada H; Inokawa H; Matsumoto N; Ueda Y; Kimura M
    Eur J Neurosci; 2011 Aug; 34(3):489-506. PubMed ID: 21781189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of neuronal signals representing object-centered location and saccade direction in macaque supplementary eye field.
    Moorman DE; Olson CR
    J Neurophysiol; 2007 May; 97(5):3554-66. PubMed ID: 17329630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixational saccade-related activity of pedunculopontine tegmental nucleus neurons in behaving monkeys.
    Okada K; Kobayashi Y
    Eur J Neurosci; 2014 Aug; 40(4):2641-51. PubMed ID: 24863483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network representation of response probability in the striatum.
    Blazquez PM; Fujii N; Kojima J; Graybiel AM
    Neuron; 2002 Mar; 33(6):973-82. PubMed ID: 11906702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of action sequence boundaries by macaque prefrontal cortical neurons.
    Fujii N; Graybiel AM
    Science; 2003 Aug; 301(5637):1246-9. PubMed ID: 12947203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistics of midbrain dopamine neuron spike trains in the awake primate.
    Bayer HM; Lau B; Glimcher PW
    J Neurophysiol; 2007 Sep; 98(3):1428-39. PubMed ID: 17615124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of outcome risk and action in the anterior caudate nucleus.
    Yanike M; Ferrera VP
    J Neurosci; 2014 Feb; 34(9):3279-90. PubMed ID: 24573287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of primate caudate neural activity and saccade parameters in reward-oriented behavior.
    Itoh H; Nakahara H; Hikosaka O; Kawagoe R; Takikawa Y; Aihara K
    J Neurophysiol; 2003 Apr; 89(4):1774-83. PubMed ID: 12686566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of oculomotor and visual activities in the primate pedunculopontine tegmental nucleus during visually guided saccade tasks.
    Okada K; Kobayashi Y
    Eur J Neurosci; 2009 Dec; 30(11):2211-23. PubMed ID: 20128856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual and saccade-related activity in macaque posterior cingulate cortex.
    Dean HL; Crowley JC; Platt ML
    J Neurophysiol; 2004 Nov; 92(5):3056-68. PubMed ID: 15201314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance error-related activity in monkey striatum during social interactions.
    Báez-Mendoza R; Schultz W
    Sci Rep; 2016 Nov; 6():37199. PubMed ID: 27849004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.