These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26291206)

  • 1. Collisional Energy Transfer from Highly Vibrationally Excited Radicals Is Very Efficient.
    Wilhelm MJ; Nikow M; Smith JM; Dai HL
    J Phys Chem Lett; 2013 Jan; 4(1):23-9. PubMed ID: 26291206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collisional Energy Transfer from Vibrationally Excited Hydrogen Isocyanide.
    Wilhelm MJ; Dai HL
    J Phys Chem A; 2019 Aug; 123(32):6927-6936. PubMed ID: 31339307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.
    Kim K; Johnson AM; Powell AL; Mitchell DG; Sevy ET
    J Chem Phys; 2014 Dec; 141(23):234306. PubMed ID: 25527934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nu1 CH stretching mode of the ketenyl (HCCO) radical.
    Wilhelm MJ; McNavage W; Groller R; Dai HL
    J Chem Phys; 2008 Feb; 128(6):064313. PubMed ID: 18282044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercollisions and energy transfer of highly vibrationally excited molecules.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2005 Oct; 123(13):131102. PubMed ID: 16223268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.
    Chen Hsu H; Tsai MT; Dyakov YA; Ni CK
    J Chem Phys; 2011 Aug; 135(5):054311. PubMed ID: 21823704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational distributions of the CO(v) products of the C2H2 + O(3P) and HCCO + O(3P) reactions studied by FTIR emission.
    Chikan V; Leone SR
    J Phys Chem A; 2005 Mar; 109(11):2525-33. PubMed ID: 16833554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase collisional relaxation of the CH2I radical after UV photolysis of CH2I2.
    Lenzer T; Oum K; Schroeder J; Sekiguchi K
    J Phys Chem A; 2005 Dec; 109(48):10824-31. PubMed ID: 16331925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-resolved collisional quenching of vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) by D35Cl(v = 0).
    Li Z; Korobkova E; Werner K; Shum L; Mullin AS
    J Chem Phys; 2005 Nov; 123(17):174306. PubMed ID: 16375527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolysis (193 nm) of SO2: nascent product energy distribution examined through IR emission.
    Ma J; Wilhelm MJ; Smith JM; Dai HL
    J Phys Chem A; 2012 Jan; 116(1):166-73. PubMed ID: 22148244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2.
    Mu B; Cui X; Shen Y; Dai K
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():299-310. PubMed ID: 25909904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetically controlled selective ionization study on the efficient collisional energy transfer in the deactivation of highly vibrationally excited trans-stilbene.
    Frerichs H; Hollerbach M; Lenzer T; Luther K
    J Phys Chem A; 2006 Mar; 110(9):3179-85. PubMed ID: 16509642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].
    Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32,700 and 37,900 cm(-1)) relaxation.
    Du J; Sassin NA; Havey DK; Hsu K; Mullin AS
    J Phys Chem A; 2013 Nov; 117(46):12104-15. PubMed ID: 24063656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer of highly vibrationally excited biphenyl.
    Hsu HC; Dyakov Y; Ni CK
    J Chem Phys; 2010 Nov; 133(17):174315. PubMed ID: 21054040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.