These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26291208)

  • 1. Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics.
    Gagorik AG; Mohin JW; Kowalewski T; Hutchison GR
    J Phys Chem Lett; 2013 Jan; 4(1):36-42. PubMed ID: 26291208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.
    Heitzer HM; Savoie BM; Marks TJ; Ratner MA
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7456-60. PubMed ID: 24829165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte carlo simulations of organic photovoltaics.
    Groves C; Greenham NC
    Top Curr Chem; 2014; 352():257-78. PubMed ID: 23846245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
    Heiber MC; Dhinojwala A
    J Chem Phys; 2012 Jul; 137(1):014903. PubMed ID: 22779679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics.
    Jailaubekov AE; Willard AP; Tritsch JR; Chan WL; Sai N; Gearba R; Kaake LG; Williams KJ; Leung K; Rossky PJ; Zhu XY
    Nat Mater; 2013 Jan; 12(1):66-73. PubMed ID: 23223125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free carrier generation in organic photovoltaic bulk heterojunctions of conjugated polymers with molecular acceptors: planar versus spherical acceptors.
    Nardes AM; Ferguson AJ; Wolfer P; Gui K; Burn PL; Meredith P; Kopidakis N
    Chemphyschem; 2014 Jun; 15(8):1539-49. PubMed ID: 24599888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient evaluation of Coulomb interactions in kinetic Monte Carlo simulations of charge transport.
    Pippig M; Mercuri F
    J Chem Phys; 2020 Apr; 152(16):164102. PubMed ID: 32357790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield of exciton dissociation in a donor-acceptor photovoltaic junction.
    Li G; Nitzan A; Ratner MA
    Phys Chem Chem Phys; 2012 Nov; 14(41):14270-6. PubMed ID: 22955347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices.
    Groves C; Marsh RA; Greenham NC
    J Chem Phys; 2008 Sep; 129(11):114903. PubMed ID: 19044985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal effect on the morphology and performance of organic photovoltaics.
    Kawashima E; Fujii M; Yamashita K
    Phys Chem Chem Phys; 2016 Sep; 18(38):26456-26465. PubMed ID: 27722481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulomb barrier for charge separation at an organic semiconductor interface.
    Muntwiler M; Yang Q; Tisdale WA; Zhu XY
    Phys Rev Lett; 2008 Nov; 101(19):196403. PubMed ID: 19113289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating charge transport in organic semiconductors and devices: a review.
    Groves C
    Rep Prog Phys; 2017 Feb; 80(2):026502. PubMed ID: 27991440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation.
    Tamura H; Burghardt I
    J Am Chem Soc; 2013 Nov; 135(44):16364-7. PubMed ID: 24138412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delocalisation enables efficient charge generation in organic photovoltaics, even with little to no energetic offset.
    Balzer D; Kassal I
    Chem Sci; 2024 Mar; 15(13):4779-4789. PubMed ID: 38550679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer.
    Kim JS; Lu L; Sreearunothai P; Seeley A; Yim KH; Petrozza A; Murphy CE; Beljonne D; Cornil J; Friend RH
    J Am Chem Soc; 2008 Oct; 130(39):13120-31. PubMed ID: 18767836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics.
    Ham MH; Paulus GL; Lee CY; Song C; Kalantar-zadeh K; Choi W; Han JH; Strano MS
    ACS Nano; 2010 Oct; 4(10):6251-9. PubMed ID: 20886891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling charge transport in organic photovoltaic materials.
    Nelson J; Kwiatkowski JJ; Kirkpatrick J; Frost JM
    Acc Chem Res; 2009 Nov; 42(11):1768-78. PubMed ID: 19848409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.
    Li H; Fan C; Fu W; Xin HL; Chen H
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):956-60. PubMed ID: 25425485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation.
    Wicklein A; Ghosh S; Sommer M; Würthner F; Thelakkat M
    ACS Nano; 2009 May; 3(5):1107-14. PubMed ID: 19408933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.