BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26291218)

  • 21. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of charge and discharge polarization by cobalt nanoparticles-embedded carbon nanofibers for Li-O2 batteries.
    Kim YJ; Lee H; Lee DJ; Park JK; Kim HT
    ChemSusChem; 2015 Aug; 8(15):2496-502. PubMed ID: 26178625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.
    Wen R; Hong M; Byon HR
    J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Speidel A; Scheffler R; Miller DC; Viswanathan V; Hummelshøj JS; Nørskov JK; Luntz AC
    J Phys Chem Lett; 2012 Apr; 3(8):997-1001. PubMed ID: 26286562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries.
    Yin W; Shen Y; Zou F; Hu X; Chi B; Huang Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4947-54. PubMed ID: 25689844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.
    Lu YC; Gasteiger HA; Shao-Horn Y
    J Am Chem Soc; 2011 Nov; 133(47):19048-51. PubMed ID: 22044022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries.
    Gowda SR; Brunet A; Wallraff GM; McCloskey BD
    J Phys Chem Lett; 2013 Jan; 4(2):276-9. PubMed ID: 26283434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability.
    Kundu D; Black R; Adams B; Harrison K; Zavadil K; Nazar LF
    J Phys Chem Lett; 2015 Jun; 6(12):2252-8. PubMed ID: 26266600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control.
    Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L
    Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Organic Catalyst for Li-O2 Batteries: Dilithium Quinone-1,4-Dicarboxylate.
    Liu J; Renault S; Brandell D; Gustafsson T; Edström K; Zhu J
    ChemSusChem; 2015 Jul; 8(13):2198-203. PubMed ID: 26073442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable synthesis of ordered mesoporous NiFe₂O₄ with tunable pore structure as a bifunctional catalyst for Li-O₂ batteries.
    Li Y; Guo K; Li J; Dong X; Yuan T; Li X; Yang H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20949-57. PubMed ID: 25405827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size effect of lithium peroxide on charging performance of Li-O2 batteries.
    Hu Y; Han X; Cheng F; Zhao Q; Hu Z; Chen J
    Nanoscale; 2014 Jan; 6(1):177-80. PubMed ID: 24219997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides.
    Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y
    Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death.
    Wang J; Zhang Y; Guo L; Wang E; Peng Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE
    J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles.
    Yilmaz E; Yogi C; Yamanaka K; Ohta T; Byon HR
    Nano Lett; 2013 Oct; 13(10):4679-84. PubMed ID: 24024674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries.
    Jian Z; Liu P; Li F; He P; Guo X; Chen M; Zhou H
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):442-6. PubMed ID: 24259081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free-Standing Thin Webs of Activated Carbon Nanofibers by Electrospinning for Rechargeable Li-O2 Batteries.
    Nie H; Xu C; Zhou W; Wu B; Li X; Liu T; Zhang H
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1937-42. PubMed ID: 26691321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst.
    Kim BG; Kim HJ; Back S; Nam KW; Jung Y; Han YK; Choi JW
    Sci Rep; 2014 Feb; 4():4225. PubMed ID: 24573326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.