These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 26291218)

  • 61. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.
    Liu P; Han J; Guo X; Ito Y; Yang C; Ning S; Fujita T; Hirata A; Chen M
    Sci Rep; 2018 Feb; 8(1):3134. PubMed ID: 29453422
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O
    Liu T; Frith JT; Kim G; Kerber RN; Dubouis N; Shao Y; Liu Z; Magusin PCMM; Casford MTL; Garcia-Araez N; Grey CP
    J Am Chem Soc; 2018 Jan; 140(4):1428-1437. PubMed ID: 29345915
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A QCM study of ORR-OER and an in situ study of a redox mediator in DMSO for Li-O2 batteries.
    Schaltin S; Vanhoutte G; Wu M; Bardé F; Fransaer J
    Phys Chem Chem Phys; 2015 May; 17(19):12575-86. PubMed ID: 25898788
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Li
    Liu L; Liu Y; Wang C; Peng X; Fang W; Hou Y; Wang J; Ye J; Wu Y
    Small Methods; 2022 Jan; 6(1):e2101280. PubMed ID: 35041287
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative Delineation of the Low Energy Decomposition Pathway for Lithium Peroxide in Lithium-Oxygen Battery.
    Dutta A; Ito K; Nomura A; Kubo Y
    Adv Sci (Weinh); 2020 Oct; 7(19):2001660. PubMed ID: 33042767
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reaction chemistry in rechargeable Li-O
    Lim HD; Lee B; Bae Y; Park H; Ko Y; Kim H; Kim J; Kang K
    Chem Soc Rev; 2017 May; 46(10):2873-2888. PubMed ID: 28418060
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li-O
    Karuppasamy K; Prasanna K; Jothi VR; Vikraman D; Hussain S; Hwang JH; Kim HS
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33114076
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Binder-free graphene foams for O2 electrodes of Li-O2 batteries.
    Zhang W; Zhu J; Ang H; Zeng Y; Xiao N; Gao Y; Liu W; Hng HH; Yan Q
    Nanoscale; 2013 Oct; 5(20):9651-8. PubMed ID: 23963594
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insights into Electrochemical Oxidation of NaO
    Morasch R; Kwabi DG; Tulodziecki M; Risch M; Zhang S; Shao-Horn Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4374-4381. PubMed ID: 28173703
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries.
    Højberg J; McCloskey BD; Hjelm J; Vegge T; Johansen K; Norby P; Luntz AC
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4039-47. PubMed ID: 25625507
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions.
    Lu YC; Crumlin EJ; Veith GM; Harding JR; Mutoro E; Baggetto L; Dudney NJ; Liu Z; Shao-Horn Y
    Sci Rep; 2012; 2():715. PubMed ID: 23056907
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An innovative approach towards the simultaneous enhancement of the oxygen reduction and evolution reactions using a redox mediator in polymer based Li-O
    Sultana F; Althubeiti K; Abualnaja KM; Wang J; Zaman A; Ali A; Arbab SA; Uddin S; Yang Q
    Dalton Trans; 2021 Nov; 50(44):16386-16394. PubMed ID: 34734595
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage.
    Shi L; Xu A; Zhao TS
    Phys Chem Chem Phys; 2015 Nov; 17(44):29859-66. PubMed ID: 26486991
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Doped boron nitride surfaces: potential metal free bifunctional catalysts for non-aqueous Li-O
    Chowdhury C; Datta A
    Phys Chem Chem Phys; 2018 Jun; 20(24):16485-16492. PubMed ID: 29882942
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries.
    McCloskey BD; Scheffler R; Speidel A; Bethune DS; Shelby RM; Luntz AC
    J Am Chem Soc; 2011 Nov; 133(45):18038-41. PubMed ID: 21995529
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Mo2C/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life.
    Kwak WJ; Lau KC; Shin CD; Amine K; Curtiss LA; Sun YK
    ACS Nano; 2015 Apr; 9(4):4129-37. PubMed ID: 25801846
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li-O
    Ji Y; Dong H; Yang M; Hou T; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(31):20457-20462. PubMed ID: 28748245
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth.
    Mitchell RR; Gallant BM; Shao-Horn Y; Thompson CV
    J Phys Chem Lett; 2013 Apr; 4(7):1060-4. PubMed ID: 26282021
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.
    Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.