These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 26291225)

  • 1. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
    Xing L; Vatamanu J; Borodin O; Bedrov D
    J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.
    Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores.
    Wu P; Huang J; Meunier V; Sumpter BG; Qiao R
    J Phys Chem Lett; 2012 Jul; 3(13):1732-7. PubMed ID: 26291851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex capacitance scaling in ionic liquids-filled nanopores.
    Wu P; Huang J; Meunier V; Sumpter BG; Qiao R
    ACS Nano; 2011 Nov; 5(11):9044-51. PubMed ID: 22017626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface nanostructure-induced innermost ion structuring on capacitance of carbon/ionic liquid double layers.
    Tu YJ; Peng ST
    Phys Chem Chem Phys; 2024 Feb; 26(7):5932-5946. PubMed ID: 38299635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes.
    Vatamanu J; Borodin O; Smith GD
    J Phys Chem B; 2011 Mar; 115(12):3073-84. PubMed ID: 21384838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes.
    Vatamanu J; Borodin O; Smith GD
    J Am Chem Soc; 2010 Oct; 132(42):14825-33. PubMed ID: 20925318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study.
    Lamperski S; Kaja M; Bhuiyan LB; Wu J; Henderson D
    J Chem Phys; 2013 Aug; 139(5):054703. PubMed ID: 23927277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations.
    Kondrat S; Georgi N; Fedorov MV; Kornyshev AA
    Phys Chem Chem Phys; 2011 Jun; 13(23):11359-66. PubMed ID: 21566824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the ionic liquid [EMIM+][TFMSI-] confined inside rutile (110) slit nanopores.
    Singh R; Rajput NN; He X; Monk J; Hung FR
    Phys Chem Chem Phys; 2013 Oct; 15(38):16090-103. PubMed ID: 23985933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.
    Pizio O; Sokołowski S
    J Chem Phys; 2013 May; 138(20):204715. PubMed ID: 23742508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study.
    Lamperski S
    J Chem Phys; 2020 Oct; 153(13):134703. PubMed ID: 33032423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.