BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26291239)

  • 1. Synthetic Polymers from Sugar-Based Monomers.
    Galbis JA; García-Martín Mde G; de Paz MV; Galbis E
    Chem Rev; 2016 Feb; 116(3):1600-36. PubMed ID: 26291239
    [No Abstract]   [Full Text] [Related]  

  • 2. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ugi reactions with CO2 : access to functionalized polyurethanes, polycarbonates, polyamides, and polyhydantoins.
    Sehlinger A; Schneider R; Meier MA
    Macromol Rapid Commun; 2014 Nov; 35(21):1866-71. PubMed ID: 25234822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic polymers containing alpha-amino acids: from polyamides to poly(ester amide)s.
    Puiggalí J; Subirana JA
    J Pept Sci; 2005 May; 11(5):247-9. PubMed ID: 15685716
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis and characterization of highly functionalized symmetric aromatic hexa-ol intermediates from oleic acid.
    Song D; Narine SS
    Chem Phys Lipids; 2008 Sep; 155(1):43-7. PubMed ID: 18640106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From polyesters to polyamides via O-N acyl migration: an original multi-transfer reaction.
    Tailhades J; Blanquer S; Nottelet B; Coudane J; Subra G; Verdié P; Schacht E; Martinez J; Amblard M
    Macromol Rapid Commun; 2011 Jun; 32(12):876-80. PubMed ID: 21604313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic polymers: main classes of plastics and their current uses.
    Martinmaa JM
    Prog Clin Biol Res; 1984; 141():3-10. PubMed ID: 6718380
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide.
    Blattmann H; Fleischer M; Bähr M; Mülhaupt R
    Macromol Rapid Commun; 2014 Jul; 35(14):1238-54. PubMed ID: 24979310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of biodegradable poly(ester-amide)s based on tyrosine natural amino acid.
    Abdolmaleki A; Mallakpour S; Borandeh S; Sabzalian MR
    Amino Acids; 2012 May; 42(5):1997-2007. PubMed ID: 21607747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novozym 435-catalyzed syntheses of polyesters and polyamides of medicinal and industrial relevance.
    Khan A; Sharma SK; Kumar A; Watterson AC; Kumar J; Parmar VS
    ChemSusChem; 2014 Feb; 7(2):379-90. PubMed ID: 24449474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phase separable polycarbonate polymerization catalyst.
    Hongfa C; Tian J; Andreatta J; Darensbourg DJ; Bergbreiter DE
    Chem Commun (Camb); 2008 Feb; (8):975-7. PubMed ID: 18283354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol).
    Bourke SL; Kohn J
    Adv Drug Deliv Rev; 2003 Apr; 55(4):447-66. PubMed ID: 12706045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of injection-molded thermoplastic denture base resins.
    Hamanaka I; Takahashi Y; Shimizu H
    Acta Odontol Scand; 2011 Mar; 69(2):75-9. PubMed ID: 20873995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro.
    Szelest-Lewandowska A; Masiulanis B; Szymonowicz M; Pielka S; Paluch D
    J Biomed Mater Res A; 2007 Aug; 82(2):509-20. PubMed ID: 17530635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.
    Anantharaj S; Jayakannan M
    Biomacromolecules; 2012 Aug; 13(8):2446-55. PubMed ID: 22713137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced T
    Gustini L; Lavilla C; de Ilarduya AM; Muñoz-Guerra S; Koning CE
    Biomacromolecules; 2016 Oct; 17(10):3404-3416. PubMed ID: 27635782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-catalyzed synthesis of sugar-containing monomers and linear polymers.
    Park OJ; Kim DY; Dordick JS
    Biotechnol Bioeng; 2000 Oct; 70(2):208-16. PubMed ID: 10972932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature organocatalyzed reductive depolymerization of waste polyethers, polyesters, and polycarbonates.
    Feghali E; Cantat T
    ChemSusChem; 2015 Mar; 8(6):980-4. PubMed ID: 25706036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.