These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26291346)

  • 21. Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
    Baby A; John AM; Balakrishnan SP
    Chemphyschem; 2023 Mar; 24(6):e202200676. PubMed ID: 36445807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamic limits to energy conversion in solar thermal fuels.
    Strubbe DA; Grossman JC
    J Phys Condens Matter; 2019 Jan; 31(3):034002. PubMed ID: 30523877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-Based Multijunction Molecular Solar Thermal Energy Collection Device.
    Wang Z; Moïse H; Cacciarini M; Nielsen MB; Morikawa MA; Kimizuka N; Moth-Poulsen K
    Adv Sci (Weinh); 2021 Nov; 8(21):e2103060. PubMed ID: 34581516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.
    Vlasceanu A; Frandsen BN; Skov AB; Hansen AS; Rasmussen MG; Kjaergaard HG; Mikkelsen KV; Nielsen MB
    J Org Chem; 2017 Oct; 82(19):10398-10407. PubMed ID: 28853882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
    Kuisma M; Lundin A; Moth-Poulsen K; Hyldgaard P; Erhart P
    ChemSusChem; 2016 Jul; 9(14):1786-94. PubMed ID: 27254282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells.
    Krewer U; Vidakovic-Koch T; Rihko-Struckmann L
    Chemphyschem; 2011 Oct; 12(14):2518-44. PubMed ID: 21755584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels.
    Yang Y; Huang S; Ma Y; Yi J; Jiang Y; Chang X; Li Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35623-35634. PubMed ID: 35916069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oriented External Electric Field Tuning of Unsubstituted Azoheteroarene Thermal Isomerization Half-Lives.
    Avdic I; Kempfer-Robertson EM; Thompson LM
    J Phys Chem A; 2021 Sep; 125(37):8238-8248. PubMed ID: 34494847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.
    Harriman A
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110415. PubMed ID: 23816906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site Selectivity of Peptoids as Azobenzene Scaffold for Molecular Solar Thermal Energy Storage.
    Tassignon B; Wang Z; Galanti A; De Winter J; Samorì P; Cornil J; Moth-Poulsen K; Gerbaux P
    Chemistry; 2023 Dec; 29(70):e202303168. PubMed ID: 37796081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.
    Zhang L; Li R; Tang B; Wang P
    Nanoscale; 2016 Aug; 8(30):14600-7. PubMed ID: 27430282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.
    Mansø M; Petersen AU; Wang Z; Erhart P; Nielsen MB; Moth-Poulsen K
    Nat Commun; 2018 May; 9(1):1945. PubMed ID: 29769524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar energy in the context of energy use, energy transportation and energy storage.
    MacKay DJ
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110431. PubMed ID: 23816908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar Thermal Energy Storage Systems.
    Kunz A; Heindl AH; Dreos A; Wang Z; Moth-Poulsen K; Becker J; Wegner HA
    Chempluschem; 2019 Aug; 84(8):1145-1148. PubMed ID: 31943965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solar Thermal Energy Storage in a Photochromic Macrocycle.
    Vlasceanu A; Broman SL; Hansen AS; Skov AB; Cacciarini M; Kadziola A; Kjaergaard HG; Mikkelsen KV; Nielsen MB
    Chemistry; 2016 Jul; 22(31):10796-800. PubMed ID: 27253462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Status and challenges for molecular solar thermal energy storage system based devices.
    Wang Z; Hölzel H; Moth-Poulsen K
    Chem Soc Rev; 2022 Aug; 51(17):7313-7326. PubMed ID: 35726574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoswitches with different numbers of azo chromophores for molecular solar thermal storage.
    Sun S; Liang S; Xu WC; Wang M; Gao J; Zhang Q; Wu S
    Soft Matter; 2022 Nov; 18(46):8840-8849. PubMed ID: 36373235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen: the future energy carrier.
    Züttel A; Remhof A; Borgschulte A; Friedrichs O
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3329-42. PubMed ID: 20566514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.