BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26291358)

  • 21. Investigating the behavior of various cocatalysts on LaTaON
    Si W; Pergolesi D; Haydous F; Fluri A; Wokaun A; Lippert T
    Phys Chem Chem Phys; 2016 Dec; 19(1):656-662. PubMed ID: 27918033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step.
    Moysiadou A; Lee S; Hsu CS; Chen HM; Hu X
    J Am Chem Soc; 2020 Jul; 142(27):11901-11914. PubMed ID: 32539368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.
    McCrory CC; Jung S; Ferrer IM; Chatman SM; Peters JC; Jaramillo TF
    J Am Chem Soc; 2015 Apr; 137(13):4347-57. PubMed ID: 25668483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes.
    Iandolo B; Wickman B; Seger B; Chorkendorff I; Zorić I; Hellman A
    Phys Chem Chem Phys; 2014 Jan; 16(3):1271-5. PubMed ID: 24297250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.
    Ping Y; Goddard WA; Galli GA
    J Am Chem Soc; 2015 Apr; 137(16):5264-7. PubMed ID: 25867053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems.
    Cheng X; Kim BJ; Fabbri E; Schmidt TJ
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34787-34795. PubMed ID: 31469262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The synthesis of nanostructured Ni5 P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting.
    Ledendecker M; Krick Calderón S; Papp C; Steinrück HP; Antonietti M; Shalom M
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12361-5. PubMed ID: 26129698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting.
    Yu X; Hua T; Liu X; Yan Z; Xu P; Du P
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15395-402. PubMed ID: 25136924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst.
    Bediako DK; Surendranath Y; Nocera DG
    J Am Chem Soc; 2013 Mar; 135(9):3662-74. PubMed ID: 23360238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the Origin of the OER Activity of Ultrathin Manganese Oxide Films.
    Plate P; Höhn C; Bloeck U; Bogdanoff P; Fiechter S; Abdi FF; van de Krol R; Bronneberg AC
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2428-2436. PubMed ID: 33426879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thin silicon via crack-assisted layer exfoliation for photoelectrochemical water splitting.
    Lee Y; Gupta B; Tan HH; Jagadish C; Oh J; Karuturi S
    iScience; 2021 Aug; 24(8):102921. PubMed ID: 34430811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen-doped graphene supported CoSe₂ nanobelt composite catalyst for efficient water oxidation.
    Gao MR; Cao X; Gao Q; Xu YF; Zheng YR; Jiang J; Yu SH
    ACS Nano; 2014 Apr; 8(4):3970-8. PubMed ID: 24649855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting.
    Kang D; Kim TW; Kubota SR; Cardiel AC; Cha HG; Choi KS
    Chem Rev; 2015 Dec; 115(23):12839-87. PubMed ID: 26538328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting.
    Wei S; Xia X; Bi S; Hu S; Wu X; Hsu HY; Zou X; Huang K; Zhang DW; Sun Q; Bard AJ; Yu ET; Ji L
    Chem Soc Rev; 2024 Jul; 53(13):6860-6916. PubMed ID: 38833171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry.
    Goldsmith ZK; Harshan AK; Gerken JB; Vörös M; Galli G; Stahl SS; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3050-3055. PubMed ID: 28265083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrate-induced and in situ electrochemical activation synthesis of oxygen deficiencies-rich nickel/nickel (oxy)hydroxide hybrid films for enhanced electrocatalytic water splitting.
    Gao MY; Sun CB; Lei H; Zeng JR; Zhang QB
    Nanoscale; 2018 Sep; 10(37):17546-17551. PubMed ID: 30225498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting.
    Jiang N; You B; Sheng M; Sun Y
    Angew Chem Int Ed Engl; 2015 May; 54(21):6251-4. PubMed ID: 25900260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite.
    Qiu J; Hajibabaei H; Nellist MR; Laskowski FAL; Hamann TW; Boettcher SW
    ACS Cent Sci; 2017 Sep; 3(9):1015-1025. PubMed ID: 28979943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the chemical state of Co oxide electrocatalysts during alkaline water splitting.
    Friebel D; Bajdich M; Yeo BS; Louie MW; Miller DJ; Sanchez Casalongue H; Mbuga F; Weng TC; Nordlund D; Sokaras D; Alonso-Mori R; Bell AT; Nilsson A
    Phys Chem Chem Phys; 2013 Oct; 15(40):17460-7. PubMed ID: 24026021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.