These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26291358)

  • 41. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst.
    Gao M; Sheng W; Zhuang Z; Fang Q; Gu S; Jiang J; Yan Y
    J Am Chem Soc; 2014 May; 136(19):7077-84. PubMed ID: 24761994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoelectrochemical OER activity by employing BiVO
    Kaur M; Chhetri M; Rao CNR
    Phys Chem Chem Phys; 2020 Jan; 22(2):811-817. PubMed ID: 31840719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting.
    Cheng Y; Liu C; Cheng HM; Jiang SP
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10089-98. PubMed ID: 24927372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silicon based photoelectrodes for photoelectrochemical water splitting.
    Fan R; Mi Z; Shen M
    Opt Express; 2019 Feb; 27(4):A51-A80. PubMed ID: 30876004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films.
    Mei B; Seger B; Pedersen T; Malizia M; Hansen O; Chorkendorff I; Vesborg PC
    J Phys Chem Lett; 2014 Jun; 5(11):1948-52. PubMed ID: 26273878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.
    McCrory CC; Jung S; Peters JC; Jaramillo TF
    J Am Chem Soc; 2013 Nov; 135(45):16977-87. PubMed ID: 24171402
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting.
    Ai G; Mo R; Li H; Zhong J
    Nanoscale; 2015 Apr; 7(15):6722-8. PubMed ID: 25804292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facilely Tuning Porous NiCo2 O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting.
    Zhu C; Fu S; Du D; Lin Y
    Chemistry; 2016 Mar; 22(12):4000-7. PubMed ID: 26845062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pristine GaFeO
    Sun X; Wang M; Li HF; Meng L; Lv XJ; Li L; Li M
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205907. PubMed ID: 36658721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives.
    Liu D; Kuang Y
    Adv Mater; 2024 Apr; ():e2311692. PubMed ID: 38619834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FeVO
    Chang S; Wang M; Wang CC; Fu X; Bi H; Zeng Q
    ChemSusChem; 2021 Jul; 14(14):3010-3017. PubMed ID: 34105262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.
    Wang W; Xu M; Xu X; Zhou W; Shao Z
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):136-152. PubMed ID: 30790407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2.
    Stoerzinger KA; Qiao L; Biegalski MD; Shao-Horn Y
    J Phys Chem Lett; 2014 May; 5(10):1636-41. PubMed ID: 26270358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.
    Su C; Wang W; Chen Y; Yang G; Xu X; Tadé MO; Shao Z
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17663-70. PubMed ID: 26222739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.
    Trotochaud L; Young SL; Ranney JK; Boettcher SW
    J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions.
    Feng C; Wang F; Liu Z; Nakabayashi M; Xiao Y; Zeng Q; Fu J; Wu Q; Cui C; Han Y; Shibata N; Domen K; Sharp ID; Li Y
    Nat Commun; 2021 Oct; 12(1):5980. PubMed ID: 34645825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting.
    Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM
    ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Searching for active binary rutile oxide catalyst for water splitting from first principles.
    Chen D; Fang YH; Liu ZP
    Phys Chem Chem Phys; 2012 Dec; 14(48):16612-7. PubMed ID: 22941355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting.
    Mills TJ; Lin F; Boettcher SW
    Phys Rev Lett; 2014 Apr; 112(14):148304. PubMed ID: 24766026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.