These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26291360)

  • 21. Photoinduced reductive repair of thymine glycol: implications for excess electron transfer through DNA containing modified bases.
    Ito T; Kondo A; Terada S; Nishimoto S
    J Am Chem Soc; 2006 Aug; 128(33):10934-42. PubMed ID: 16910690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction mechanisms of DNA photolyase.
    Brettel K; Byrdin M
    Curr Opin Struct Biol; 2010 Dec; 20(6):693-701. PubMed ID: 20705454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic structure of (6-4) DNA photoproduct repair involving a non-oxetane pathway.
    Domratcheva T; Schlichting I
    J Am Chem Soc; 2009 Dec; 131(49):17793-9. PubMed ID: 19921821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do photolyases need to provide considerable activation energy for the splitting of cyclobutane pyrimidine dimer radical anions?
    Song QH; Tang WJ; Ji XB; Wang HB; Guo QX
    Chemistry; 2007; 13(27):7762-70. PubMed ID: 17568458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for concerted electron proton transfer in charge recombination between FADH- and 306Trp• in Escherichia coli photolyase.
    Zieba AA; Richardson C; Lucero C; Dieng SD; Gindt YM; Schelvis JP
    J Am Chem Soc; 2011 May; 133(20):7824-36. PubMed ID: 21534528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-induced reactions of Escherichia coli DNA photolyase monitored by Fourier transform infrared spectroscopy.
    Schleicher E; Hessling B; Illarionova V; Bacher A; Weber S; Richter G; Gerwert K
    FEBS J; 2005 Apr; 272(8):1855-66. PubMed ID: 15819881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers.
    Trinter F; Schöffler MS; Kim HK; Sturm FP; Cole K; Neumann N; Vredenborg A; Williams J; Bocharova I; Guillemin R; Simon M; Belkacem A; Landers AL; Weber T; Schmidt-Böcking H; Dörner R; Jahnke T
    Nature; 2014 Jan; 505(7485):664-6. PubMed ID: 24362568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.
    Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K
    J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between thymine dimer and flavin-adenine dinucleotide: a DFT and direct ab initio molecular dynamics study.
    Tachikawa H; Kawabata H
    J Phys Chem B; 2008 Jun; 112(24):7315-9. PubMed ID: 18503272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site- and energy-selective slow-electron production through intermolecular Coulombic decay.
    Gokhberg K; Kolorenč P; Kuleff AI; Cederbaum LS
    Nature; 2014 Jan; 505(7485):661-3. PubMed ID: 24362566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study on the repair mechanism of the (6-4) photolesion by the (6-4) photolyase.
    Sadeghian K; Bocola M; Merz T; Schütz M
    J Am Chem Soc; 2010 Nov; 132(45):16285-95. PubMed ID: 20977236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA photorepair: chromophore composition and function in two classes of DNA photolyases.
    Jorns MS
    Biofactors; 1990 Oct; 2(4):207-11. PubMed ID: 2282137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum chemical study of the enzymatic repair of T(6-4)C/C(6-4)T UV-photolesions by DNA photolyases.
    Faraji S; Wirz L; Dreuw A
    Chemphyschem; 2013 Aug; 14(12):2817-24. PubMed ID: 23821498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri.
    Usman A; Brazard J; Martin MM; Plaza P; Heijde M; Zabulon G; Bowler C
    J Photochem Photobiol B; 2009 Jul; 96(1):38-48. PubMed ID: 19427226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV.
    Thiagarajan V; Villette S; Espagne A; Eker AP; Brettel K; Byrdin M
    Biochemistry; 2010 Jan; 49(2):297-303. PubMed ID: 20000331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whence flavins? Redox-active ribonucleotides link metabolism and genome repair to the RNA world.
    Nguyen KV; Burrows CJ
    Acc Chem Res; 2012 Dec; 45(12):2151-9. PubMed ID: 23054469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competition between proton transfer and intermolecular Coulombic decay in water.
    Richter C; Hollas D; Saak CM; Förstel M; Miteva T; Mucke M; Björneholm O; Sisourat N; Slavíček P; Hergenhahn U
    Nat Commun; 2018 Nov; 9(1):4988. PubMed ID: 30478319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling?
    Essen LO
    Curr Opin Struct Biol; 2006 Feb; 16(1):51-9. PubMed ID: 16427270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling Low-Energy Electron Emission via Resonant-Auger-Induced Interatomic Coulombic Decay.
    Kimura M; Fukuzawa H; Tachibana T; Ito Y; Mondal S; Okunishi M; Schöffler M; Williams J; Jiang Y; Tamenori Y; Saito N; Ueda K
    J Phys Chem Lett; 2013 Jun; 4(11):1838-42. PubMed ID: 26283118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.