These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26291363)

  • 1. Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective.
    Pastore M; De Angelis F
    J Phys Chem Lett; 2013 Mar; 4(6):956-74. PubMed ID: 26291363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.
    De Angelis F
    Acc Chem Res; 2014 Nov; 47(11):3349-60. PubMed ID: 24856085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency.
    Pastore M; De Angelis F
    Top Curr Chem; 2014; 352():151-236. PubMed ID: 24682760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.
    Hardin BE; Sellinger A; Moehl T; Humphry-Baker R; Moser JE; Wang P; Zakeeruddin SM; Grätzel M; McGehee MD
    J Am Chem Soc; 2011 Jul; 133(27):10662-7. PubMed ID: 21619039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular interactions between a Ru complex and organic dyes in cosensitized solar cells: a computational study.
    Kusama H; Funaki T; Koumura N; Sayama K
    Phys Chem Chem Phys; 2014 Aug; 16(30):16166-75. PubMed ID: 24968132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized TiO₂ heterointerfaces: disentangling the effects of aggregation, solvation, and surface protonation.
    Marotta G; Lobello MG; Anselmi C; Barozzino Consiglio G; Calamante M; Mordini A; Pastore M; De Angelis F
    Chemphyschem; 2014 Apr; 15(6):1116-25. PubMed ID: 24402779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-Principles Computational Modeling of Fluorescence Resonance Energy Transfer in Co-Sensitized Dye Solar Cells.
    Pastore M; Angelis FD
    J Phys Chem Lett; 2012 Aug; 3(16):2146-53. PubMed ID: 26295762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.
    Anselmi C; Mosconi E; Pastore M; Ronca E; De Angelis F
    Phys Chem Chem Phys; 2012 Dec; 14(46):15963-74. PubMed ID: 23108504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emergence of copper(I)-based dye sensitized solar cells.
    Housecroft CE; Constable EC
    Chem Soc Rev; 2015 Dec; 44(23):8386-98. PubMed ID: 26356386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes.
    Marinado T; Nonomura K; Nissfolk J; Karlsson MK; Hagberg DP; Sun L; Mori S; Hagfeldt A
    Langmuir; 2010 Feb; 26(4):2592-8. PubMed ID: 19863060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study.
    Mosconi E; Yum JH; Kessler F; Gómez García CJ; Zuccaccia C; Cinti A; Nazeeruddin MK; Grätzel M; De Angelis F
    J Am Chem Soc; 2012 Nov; 134(47):19438-53. PubMed ID: 23113640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells.
    Weidelener M; Powar S; Kast H; Yu Z; Boix PP; Li C; Müllen K; Geiger T; Kuster S; Nüesch F; Bach U; Mishra A; Bäuerle P
    Chem Asian J; 2014 Nov; 9(11):3251-63. PubMed ID: 25234556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of the efficiency improvement of black-dye-based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions.
    Ozawa H; Okuyama Y; Arakawa H
    Chemphyschem; 2014 Apr; 15(6):1201-6. PubMed ID: 24482147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical procedure for optimizing dye-sensitized solar cells: from electronic structure to photovoltaic efficiency.
    Le Bahers T; Labat F; Pauporté T; Lainé PP; Ciofini I
    J Am Chem Soc; 2011 May; 133(20):8005-13. PubMed ID: 21513301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arylamine organic dyes for dye-sensitized solar cells.
    Liang M; Chen J
    Chem Soc Rev; 2013 Apr; 42(8):3453-88. PubMed ID: 23396530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.