BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26291433)

  • 1. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion.
    Yin B; Barrionuevo G; Weber SG
    ACS Chem Neurosci; 2015 Nov; 6(11):1838-48. PubMed ID: 26291433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
    Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ
    J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in Reperfusion-Induced Mitochondrial Oxidative Stress and Cell Death Between Hippocampal CA1 and CA3 Subfields Are Due to the Mitochondrial Thioredoxin System.
    Yin B; Barrionuevo G; Batinic-Haberle I; Sandberg M; Weber SG
    Antioxid Redox Signal; 2017 Sep; 27(9):534-549. PubMed ID: 28129719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial GSH Systems in CA1 Pyramidal Cells and Astrocytes React Differently during Oxygen-Glucose Deprivation and Reperfusion.
    Yin B; Barrionuevo G; Weber SG
    ACS Chem Neurosci; 2018 Apr; 9(4):738-748. PubMed ID: 29172440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time quantification of subcellular H
    Panieri E; Millia C; Santoro MM
    Free Radic Biol Med; 2017 Aug; 109():189-200. PubMed ID: 28192232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose/oxygen deprivation and reperfusion upregulate SNAREs and complexin in organotypic hippocampal slice cultures.
    Park SJ; Jung YJ; Kim YA; Lee-Kang JH; Lee KE
    Neuropathology; 2008 Dec; 28(6):612-20. PubMed ID: 18503508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Vulnerability of CA1 versus CA3 Pyramidal Neurons After Ischemia: Possible Relationship to Sources of Zn2+ Accumulation and Its Entry into and Prolonged Effects on Mitochondria.
    Medvedeva YV; Ji SG; Yin HZ; Weiss JH
    J Neurosci; 2017 Jan; 37(3):726-737. PubMed ID: 28100752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
    Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R
    Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient light-induced intracellular oxidation revealed by redox biosensor.
    Kolossov VL; Beaudoin JN; Hanafin WP; DiLiberto SJ; Kenis PJ; Gaskins HR
    Biochem Biophys Res Commun; 2013 Oct; 439(4):517-21. PubMed ID: 24025674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum.
    Kasozi D; Mohring F; Rahlfs S; Meyer AJ; Becker K
    PLoS Pathog; 2013; 9(12):e1003782. PubMed ID: 24348249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insufficient endogenous redox buffer capacity may underlie neuronal vulnerability to cerebral ischemia and reperfusion.
    Röhnert P; Schröder UH; Ziabreva I; Täger M; Reymann KG; Striggow F
    J Neurosci Res; 2012 Jan; 90(1):193-202. PubMed ID: 21971686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time imaging of the intracellular glutathione redox potential.
    Gutscher M; Pauleau AL; Marty L; Brach T; Wabnitz GH; Samstag Y; Meyer AJ; Dick TP
    Nat Methods; 2008 Jun; 5(6):553-9. PubMed ID: 18469822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator.
    Katsalifis A; Casaril AM; Depp C; Bas-Orth C
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34747400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal imaging of glutathione redox potential in living plant cells.
    Schwarzländer M; Fricker MD; Müller C; Marty L; Brach T; Novak J; Sweetlove LJ; Hell R; Meyer AJ
    J Microsc; 2008 Aug; 231(2):299-316. PubMed ID: 18778428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring intracellular redox changes in ozone-exposed airway epithelial cells.
    Gibbs-Flournoy EA; Simmons SO; Bromberg PA; Dick TP; Samet JM
    Environ Health Perspect; 2013 Mar; 121(3):312-7. PubMed ID: 23249900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
    Ugalde JM; Fecker L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Methods Mol Biol; 2022; 2526():65-85. PubMed ID: 35657512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural investigation of microcalcification and the role of oxygen-glucose deprivation in cultured rat hippocampal slices.
    Riew TR; Kim HL; Shin YJ; Park JH; Pak HJ; Lee MY
    Brain Res; 2015 Oct; 1622():430-42. PubMed ID: 26188662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.
    Zhang H; Cao HJ; Kimelberg HK; Zhou M
    PLoS One; 2011 Feb; 6(2):e16803. PubMed ID: 21347298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells.
    Fernández-Puente E; Palomero J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.