These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2629171)

  • 1. Effects of divalent cations on snake venom cardiotoxin-induced hemolysis and 3H-deoxyglucose-6-phosphate release from human red blood cells.
    Jiang MS; Fletcher JE; Smith LA
    Toxicon; 1989; 27(12):1297-305. PubMed ID: 2629171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom.
    Jiang MS; Fletcher JE; Smith LA
    Toxicon; 1989; 27(2):247-57. PubMed ID: 2718193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane.
    Fletcher JE; Jiang MS; Tripolitis L; Smith LA; Beech J
    Toxicon; 1990; 28(6):657-67. PubMed ID: 2402762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins of Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site.
    Osorio e Castro VR; Vernon LP
    Toxicon; 1989; 27(5):511-7. PubMed ID: 2749751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a cardiotoxin from Naja naja kaouthia venom on skeletal muscle: involvement of calcium-induced calcium release, sodium ion currents and phospholipases A2 and C.
    Fletcher JE; Jiang MS; Gong QH; Yudkowsky ML; Wieland SJ
    Toxicon; 1991; 29(12):1489-500. PubMed ID: 1666202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding properties of Pyrularia thionin and Naja naja kaouthia cardiotoxin to human and animal erythrocytes and to murine P388 cells.
    Vernon LP; Rogers A
    Toxicon; 1992 Jul; 30(7):711-21. PubMed ID: 1509490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures.
    Zusman N; Cafmeyer N; Hudson RA
    Toxicon; 1982; 20(2):517-20. PubMed ID: 7080058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the interaction of cobra venom protein cardiotoxins with erythrocytes.
    Zusman N; Miklas TM; Graves T; Dambach GE; Hudson RA
    Biochem Biophys Res Commun; 1984 Oct; 124(2):629-36. PubMed ID: 6333874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snake venom cardiotoxins and bee venom melittin activate phospholipase C activity in primary cultures of skeletal muscle.
    Fletcher JE; Jiang MS; Gong QH; Smith LA
    Biochem Cell Biol; 1991 Apr; 69(4):274-81. PubMed ID: 2054159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contracture induction by snake venom cardiotoxin in skeletal muscle from humans and rats.
    Fletcher JE; Lizzo FH
    Toxicon; 1987; 25(9):1003-10. PubMed ID: 3433297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations.
    Gorai B; Sivaraman T
    Int J Biol Macromol; 2017 Feb; 95():1022-1036. PubMed ID: 27984143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of snake venom cardiotoxin (a membrane-disruptive polypeptide) with human erythrocytes.
    Chen YH; Liou RF; Hu CT; Juan CC; Yang JT
    Mol Cell Biochem; 1987 Jan; 73(1):69-76. PubMed ID: 3807900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of calcium and phosphate ions on hemolysis induced by Pyrularia thionin and Naja naja kaouthia cardiotoxin.
    Vernon LP; Rogers A
    Toxicon; 1992 Jul; 30(7):701-9. PubMed ID: 1509489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species difference in modulation of calcium release by Naja naja kaouthia snake venom cardiotoxin in terminal cisternae from human and equine skeletal muscle.
    Fletcher JE; Tripolitis L; Beech J
    Toxicon; 1993 Jan; 31(1):43-51. PubMed ID: 8446962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide).
    Chen YH; Hu CT; Yang JT
    Biochem Int; 1984 Feb; 8(2):329-38. PubMed ID: 6477605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synergism of cardiotoxin and phospholipase A2 in hemolysis.
    Louw AI; Visser L
    Biochim Biophys Acta; 1978 Sep; 512(1):163-71. PubMed ID: 698212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle.
    Harvey AL; Hider RC; Khader F
    Biochim Biophys Acta; 1983 Feb; 728(2):215-21. PubMed ID: 6830777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.
    Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B
    Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the anticoagulants from Taiwan cobra (Naja naja atra) snake venom.
    Teng CM; Kuo YP; Lee LG; Ouyang CH
    Toxicon; 1987; 25(2):201-10. PubMed ID: 3576637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of divalent cations on beta-cell electrical activity.
    Ribalet B; Beigelman PM
    Am J Physiol; 1981 Jul; 241(1):C59-67. PubMed ID: 7018263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.