These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26291723)

  • 21. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.
    Ocaña-Mayorga S; Aguirre-Villacis F; Pinto CM; Vallejo GA; Grijalva MJ
    Vector Borne Zoonotic Dis; 2015 Dec; 15(12):732-42. PubMed ID: 26645579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus.
    Ferreira RC; Teixeira CF; de Sousa VFA; Guarneri AA
    Parasitol Res; 2018 Jun; 117(6):1737-1744. PubMed ID: 29626223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-existing locomotory activity and gene expression profiles in a kissing-bug vector of Chagas disease.
    Marliére NP; Lorenzo MG; Martínez Villegas LE; Guarneri AA
    J Insect Physiol; 2020 Apr; 122():104021. PubMed ID: 32035953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner.
    Elliot SL; Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Guarneri AA
    PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003646. PubMed ID: 25793495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats.
    Thomas ME; Rasweiler Iv JJ; D'Alessandro A
    Mem Inst Oswaldo Cruz; 2007 Aug; 102(5):559-65. PubMed ID: 17710299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The innate immune system of kissing bugs, vectors of chagas disease.
    Salcedo-Porras N; Lowenberger C
    Dev Comp Immunol; 2019 Sep; 98():119-128. PubMed ID: 31014953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trypanosoma rangeli interactions within the vector Rhodnius prolixus: a mini review.
    Azambuja P; Garcia ES
    Mem Inst Oswaldo Cruz; 2005 Aug; 100(5):567-72. PubMed ID: 16184237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies.
    Garcia ES; Castro DP; Figueiredo MB; Azambuja P
    Parasit Vectors; 2012 May; 5():105. PubMed ID: 22647620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus.
    Moreira CJC; De Cicco NNT; Galdino TS; Feder D; Gonzalez MS; Miguel RB; Coura JR; Castro HC; Azambuja P; Atella GC; Ratcliffe NA; Mello CB
    Exp Parasitol; 2018 Dec; 195():24-33. PubMed ID: 30261188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP.
    Sá AR; Dias GB; Kimoto KY; Steindel M; Grisard EC; Toledo MJ; Gomes ML
    Acta Trop; 2016 Apr; 156():115-21. PubMed ID: 26792202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species specific detection of Trypanosoma cruzi and Trypanosoma rangeli in vector and mammalian hosts by polymerase chain reaction amplification of kinetoplast minicircle DNA.
    Vallejo GA; Guhl F; Chiari E; Macedo AM
    Acta Trop; 1999 Mar; 72(2):203-12. PubMed ID: 10206119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhodnius prolixus: salivary antihemostatic components decrease with Trypanosoma rangeli infection.
    Garcia ES; Mello CB; Azambuja P; Ribeiro JM
    Exp Parasitol; 1994 May; 78(3):287-93. PubMed ID: 8162960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodnius prolixus: modulation of antioxidant defenses by Trypanosoma rangeli.
    Cosentino-Gomes D; Rocco-Machado N; Meyer-Fernandes JR
    Exp Parasitol; 2014 Oct; 145():118-24. PubMed ID: 25131776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trypanosoma cruzi-infected Rhodnius prolixus endure increased predation facilitating parasite transmission to mammal hosts.
    Marliére NP; Lorenzo MG; Guarneri AA
    PLoS Negl Trop Dis; 2021 Jul; 15(7):e0009570. PubMed ID: 34197458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus.
    Hecker H; Schwarzenbach M; Rudin W
    Parasitol Res; 1990; 76(4):311-8. PubMed ID: 2186407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycoinositolphospholipids from Trypanosomatids subvert nitric oxide production in Rhodnius prolixus salivary glands.
    Gazos-Lopes F; Mesquita RD; Silva-Cardoso L; Senna R; Silveira AB; Jablonka W; Cudischevitch CO; Carneiro AB; Machado EA; Lima LG; Monteiro RQ; Nussenzveig RH; Folly E; Romeiro A; Vanbeselaere J; Mendonça-Previato L; Previato JO; Valenzuela JG; Ribeiro JM; Atella GC; Silva-Neto MA
    PLoS One; 2012; 7(10):e47285. PubMed ID: 23077586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population.
    Vieira CS; Mattos DP; Waniek PJ; Santangelo JM; Figueiredo MB; Gumiel M; da Mota FF; Castro DP; Garcia ES; Azambuja P
    Parasit Vectors; 2015 Mar; 8():135. PubMed ID: 25888720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tamandua tetradactyla Linnaeus, 1758 (Myrmecophagidae) and Rhodnius robustus Larrousse, 1927 (Triatominae) infection focus by Trypanosoma rangeli Tejera, 1920 (Trypanosomatidae) in Attalea phalerata Mart. ex Spreng (Arecaceae) palm tree in the Brazilian Amazon.
    Dias FB; Quartier M; Romaña CA; Diotaiuti L; Harry M
    Infect Genet Evol; 2010 Dec; 10(8):1278-81. PubMed ID: 20619359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus.
    Eberhard FE; Klimpel S; Guarneri AA; Tobias NJ
    Microbiome; 2022 Mar; 10(1):45. PubMed ID: 35272716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Trypanosoma rangeli parasite-vector-vertebrate interactions and their relationship to the systematics and epidemiology of American trypanosomiasis].
    Vallejo GA; Guhl F; Carranza JC; Triana O; Pérez G; Ortiz PA; Marín DH; Villa LM; Suárez J; Sánchez IP; Pulido X; Rodríguez IB; Lozano LE; Urrea DA; Rivera FA; Cuba-Cuba C; Clavijo JA
    Biomedica; 2007 Jan; 27 Suppl 1():110-8. PubMed ID: 18154251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.