These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26291730)

  • 1. Hydrodecarboxylation of Carboxylic and Malonic Acid Derivatives via Organic Photoredox Catalysis: Substrate Scope and Mechanistic Insight.
    Griffin JD; Zeller MA; Nicewicz DA
    J Am Chem Soc; 2015 Sep; 137(35):11340-8. PubMed ID: 26291730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.
    Zhang M; Li N; Tao X; Ruzi R; Yu S; Zhu C
    Chem Commun (Camb); 2017 Sep; 53(73):10228-10231. PubMed ID: 28861564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes.
    Perkowski AJ; Nicewicz DA
    J Am Chem Soc; 2013 Jul; 135(28):10334-7. PubMed ID: 23808532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes.
    Wu X; Meng C; Yuan X; Jia X; Qian X; Ye J
    Chem Commun (Camb); 2015 Jul; 51(59):11864-7. PubMed ID: 26111079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.
    Ventre S; Petronijevic FR; MacMillan DW
    J Am Chem Soc; 2015 May; 137(17):5654-7. PubMed ID: 25881929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature decarboxylative trifluoromethylation of α,β-unsaturated carboxylic acids by photoredox catalysis.
    Xu P; Abdukader A; Hu K; Cheng Y; Zhu C
    Chem Commun (Camb); 2014 Mar; 50(18):2308-10. PubMed ID: 24445904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins.
    Millet A; Lefebvre Q; Rueping M
    Chemistry; 2016 Sep; 22(38):13464-8. PubMed ID: 27321136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic enantioselective decarboxylative protonation of heteroaryl malonates.
    Lewin R; Goodall M; Thompson ML; Leigh J; Breuer M; Baldenius K; Micklefield J
    Chemistry; 2015 Apr; 21(17):6557-63. PubMed ID: 25766433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic decarboxylative reduction of carboxylic acids and its application in asymmetric synthesis.
    Cassani C; Bergonzini G; Wallentin CJ
    Org Lett; 2014 Aug; 16(16):4228-31. PubMed ID: 25068198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Catalytic Decarboxylative Allylations of α-Amino Acids and Their Divergent Mechanisms.
    Lang SB; O'Nele KM; Douglas JT; Tunge JA
    Chemistry; 2015 Dec; 21(51):18589-93. PubMed ID: 26526115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarboxylative alkynylation and carbonylative alkynylation of carboxylic acids enabled by visible-light photoredox catalysis.
    Zhou QQ; Guo W; Ding W; Wu X; Chen X; Lu LQ; Xiao WJ
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11196-9. PubMed ID: 26149104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Catalytic Asymmetric Synthesis of β-Hydroxy Acids from Malonic Acid.
    Gao H; Luo Z; Ge P; He J; Zhou F; Zheng P; Jiang J
    Org Lett; 2015 Dec; 17(24):5962-5. PubMed ID: 26587748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroform as a hydrogen atom donor in Barton reductive decarboxylation reactions.
    Ho J; Zheng J; Meana-Pañeda R; Truhlar DG; Ko EJ; Savage GP; Williams CM; Coote ML; Tsanaktsidis J
    J Org Chem; 2013 Jul; 78(13):6677-87. PubMed ID: 23731255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of α-Benzyloxyamino-γ-butyrolactones via a Polar Radical Crossover Cycloaddition Reaction.
    Cavanaugh CL; Nicewicz DA
    Org Lett; 2015 Dec; 17(24):6082-5. PubMed ID: 26646284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.
    McCann SD; Stahl SS
    J Am Chem Soc; 2016 Jan; 138(1):199-206. PubMed ID: 26694091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrimidopteridine-catalyzed Photo-mediated Hydroacetoxylation.
    Petrosyan A; Zach L; Taeufer T; Mayer TS; Rabeah J; Pospech J
    Chemistry; 2022 Oct; 28(57):e202201761. PubMed ID: 35916156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed γ-C(sp
    Chen DF; Chu JCK; Rovis T
    J Am Chem Soc; 2017 Oct; 139(42):14897-14900. PubMed ID: 29022709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.