These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26291756)

  • 1. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.
    Cai Y; Li L; Zhang H
    Chemosphere; 2015 Nov; 138():758-64. PubMed ID: 26291756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling of antimony(V) adsorption-desorption and transport in soils.
    Zhang H; Li L; Zhou S
    Chemosphere; 2014 Sep; 111():434-40. PubMed ID: 24997949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and kinetic controls on cotransport of Pantoea agglomerans cells and Zn through clean and iron oxide coated sand columns.
    Kapetas L; Ngwenya BT; Macdonald AM; Elphick SC
    Environ Sci Technol; 2012 Dec; 46(24):13193-201. PubMed ID: 23153272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Municipal solid waste compost as a novel sorbent for antimony(V): adsorption and release trials at acidic pH.
    Diquattro S; Garau G; Lauro GP; Silvetti M; Deiana S; Castaldi P
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5603-5615. PubMed ID: 29222659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony sorption at gibbsite-water interface.
    Rakshit S; Sarkar D; Punamiya P; Datta R
    Chemosphere; 2011 Jul; 84(4):480-3. PubMed ID: 21481912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides.
    Shi Z; Peng S; Wang P; Sun Q; Wang Y; Lu G; Dang Z
    Environ Sci Process Impacts; 2018 Dec; 20(12):1691-1696. PubMed ID: 30283955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modeling of molybdenum sorption and transport in soils.
    Sun W; Selim HM
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20227-20234. PubMed ID: 32239403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modeling of antimony(III) oxidation and sorption in soils.
    Cai Y; Mi Y; Zhang H
    J Hazard Mater; 2016 Oct; 316():102-9. PubMed ID: 27214003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.
    Leuz AK; Mönch H; Johnson CA
    Environ Sci Technol; 2006 Dec; 40(23):7277-82. PubMed ID: 17180978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of pH on transport of arsenate (As
    Chotpantarat S; Amasvata C
    Sci Rep; 2020 Feb; 10(1):3512. PubMed ID: 32103033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption-desorption of Sb(III) in different soils: Kinetics and effects of the selective removal of hydroxides, organic matter, and humic substances.
    Li J; Hou H; Hosomi M
    Chemosphere; 2018 Aug; 204():371-377. PubMed ID: 29674149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.
    Guo X; Wu Z; He M; Meng X; Jin X; Qiu N; Zhang J
    J Hazard Mater; 2014 Jul; 276():339-45. PubMed ID: 24910911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy.
    Fan Y; Zheng C; Huo A; Wang Q; Shen Z; Xue Z; He C
    Ecotoxicol Environ Saf; 2019 Oct; 181():34-42. PubMed ID: 31158721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide.
    Yang H; Lu X; He M
    Environ Technol; 2018 Jun; 39(12):1515-1521. PubMed ID: 28513293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimony leaching from uncarbonated and carbonated MSWI bottom ash.
    Cornelis G; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2006 Oct; 137(3):1284-92. PubMed ID: 16730886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition.
    Qi P; Pichler T
    Chemosphere; 2016 Feb; 145():55-60. PubMed ID: 26688239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of synthetic sulfate green rust with antimony(V).
    Mitsunobu S; Takahashi Y; Sakai Y; Inumaru K
    Environ Sci Technol; 2009 Jan; 43(2):318-23. PubMed ID: 19238958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.