BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26291781)

  • 1. Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs.
    Maire J; Coyer A; Fatin-Rouge N
    J Hazard Mater; 2015 Dec; 299():630-8. PubMed ID: 26291781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant foam flushing for in situ removal of DNAPLs in shallow soils.
    Maire J; Fatin-Rouge N
    J Hazard Mater; 2017 Jan; 321():247-255. PubMed ID: 27631687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer.
    Maire J; Joubert A; Kaifas D; Invernizzi T; Marduel J; Colombano S; Cazaux D; Marion C; Klein PY; Dumestre A; Fatin-Rouge N
    Sci Total Environ; 2018 Jan; 612():1149-1158. PubMed ID: 28892859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of shear-thinning fluids and strategies for enhanced in situ removal of heavy chlorinated compounds-DNAPLs in an anisotropic aquifer.
    Bouzid I; Fatin-Rouge N
    J Hazard Mater; 2022 Jun; 432():128703. PubMed ID: 35316641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic displacement of dense nonaqueous phase liquids for source zone stabilization.
    Alexandra R; Gerhard JI; Kueper BH
    Ground Water; 2012; 50(5):765-74. PubMed ID: 22276594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations.
    Schaerlaekens J; Mertens J; Van Linden J; Vermeiren G; Carmeliet J; Feyen J
    J Contam Hydrol; 2006 Aug; 86(3-4):176-94. PubMed ID: 16600420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization.
    Wang Z; Yang Z; Chen YF
    Chemosphere; 2023 Nov; 341():140071. PubMed ID: 37673186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.
    Sweijen T; Hartog N; Marsman A; Keijzer TJ
    J Contam Hydrol; 2014 Jun; 161():24-34. PubMed ID: 24748026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments.
    Deng Y; Shi X; Zhang Z; Sun Y; Wu J; Qian J
    J Contam Hydrol; 2020 Mar; 230():103603. PubMed ID: 31980237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase.
    García-Cervilla R; Santos A; Romero A; Lorenzo D
    Sci Total Environ; 2021 Jan; 751():141782. PubMed ID: 32882562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction.
    Hofstee C; Gutiérrez Ziegler C; Trötschler O; Braun J
    J Contam Hydrol; 2003 Dec; 67(1-4):61-78. PubMed ID: 14607470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil flushing pilot test in a landfill polluted with liquid organic wastes from lindane production.
    Santos A; Domínguez CM; Lorenzo D; García-Cervilla R; Lominchar MA; Fernández J; Gómez J; Guadaño J
    Heliyon; 2019 Nov; 5(11):e02875. PubMed ID: 31768444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of thermal and chemical enhanced recovery of DNAPL in saturated porous media: 2D tank pumping experiments and two-phase flow modelling.
    Colombano S; Davarzani H; van Hullebusch ED; Huguenot D; Guyonnet D; Deparis J; Lion F; Ignatiadis I
    Sci Total Environ; 2021 Mar; 760():143958. PubMed ID: 33341615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable lindane waste remediation: Surfactant-driven residual DNAPL extraction and oxidation in a real landfill (LIFE SURFING).
    Fernández J; Lorenzo D; Net J; Cano E; Saez P; Herranz C; Domínguez CM; Cotillas S; Santos A
    Sci Total Environ; 2024 Jul; 934():173260. PubMed ID: 38761933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.
    Wu B; Li H; Du X; Zhong L; Yang B; Du P; Gu Q; Li F
    Chemosphere; 2016 Feb; 144():2142-9. PubMed ID: 26583297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir.
    Valletti N; Budroni MA; Albanese P; Marchettini N; Sanchez-Dominguez M; Lagzi I; Rossi F
    Water Res; 2023 Mar; 231():119608. PubMed ID: 36709564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing remediation of residual DNAPL in multilayer aquifers: Post-injection of alcohol-surfactant-polymer mixtures.
    Alamooti A; Colombano S; Shoker A; Ahmadi-Sénichault A; Lion F; Cazaux D; Marion C; Lagron J; Sawadogo I; Davarzani D
    Sci Total Environ; 2024 Mar; 918():170680. PubMed ID: 38325464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dip-angle influence on areal DNAPL recovery by co-solvent flooding with and without pre-flooding.
    Boyd GR; Li M; Husserl J; Ocampo-Gómez AM
    J Contam Hydrol; 2006 Jan; 82(3-4):319-37. PubMed ID: 16303209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore network and Darcy scale modelling of DNAPL remediation using ethanol flushing: Study of physical properties in DNAPL remediation.
    Aminnaji M; Yakşi K; Copty NK; Niasar VJ; Babaei M
    J Contam Hydrol; 2021 Dec; 243():103886. PubMed ID: 34507216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.