BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26291869)

  • 41. Mid-infrared near-field spectroscopy.
    Amarie S; Ganz T; Keilmann F
    Opt Express; 2009 Nov; 17(24):21794-801. PubMed ID: 19997423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Near-field infrared imaging and spectroscopy of a thin film polystyrene/poly(ethyl acrylate) blend.
    Michaels CA; Gu X; Chase DB; Stranick SJ
    Appl Spectrosc; 2004 Mar; 58(3):257-63. PubMed ID: 15035704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
    Vogt J; Huck C; Neubrech F; Toma A; Gerbert D; Pucci A
    Phys Chem Chem Phys; 2015 Sep; 17(33):21169-75. PubMed ID: 25516198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrafast Nanoimaging of the Photoinduced Phase Transition Dynamics in VO2.
    Dönges SA; Khatib O; O'Callahan BT; Atkin JM; Park JH; Cobden D; Raschke MB
    Nano Lett; 2016 May; 16(5):3029-35. PubMed ID: 27096877
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design.
    Lin H; Yi Z; Hu J
    Opt Lett; 2012 Apr; 37(8):1304-6. PubMed ID: 22513667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Infrared scanning near-field optical microscopy investigates order and clusters in model membranes.
    Generosi J; Margaritondo G; Sanghera JS; Aggarwal ID; Tolk NH; Piston DW; Castellano AC; Cricenti A
    J Microsc; 2008 Feb; 229(Pt 2):259-63. PubMed ID: 18304082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy.
    Xie Q; Zhang Y; Janzen E; Edgar JH; Xu XG
    Nat Nanotechnol; 2024 May; ():. PubMed ID: 38750165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vibrational Coupling Infrared Nanocrystallography.
    Puro RL; Gray TP; Kapfunde TA; Richter-Addo GB; Raschke MB
    Nano Lett; 2024 Feb; 24(6):1909-1915. PubMed ID: 38315708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals.
    Muller EA; Gray TP; Zhou Z; Cheng X; Khatib O; Bechtel HA; Raschke MB
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7030-7037. PubMed ID: 32170023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces.
    Carter JA; Wang Z; Dlott DD
    Acc Chem Res; 2009 Sep; 42(9):1343-51. PubMed ID: 19388671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatially confined vector fields at material-induced resonances in near-field-coupled systems.
    Aminpour H; Eng LM; Kehr SC
    Opt Express; 2020 Oct; 28(22):32316-32330. PubMed ID: 33114920
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-Field Infrared Nanospectroscopy Reveals Guest Confinement in Metal-Organic Framework Single Crystals.
    Möslein AF; Gutiérrez M; Cohen B; Tan JC
    Nano Lett; 2020 Oct; 20(10):7446-7454. PubMed ID: 32870694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Infrared optical activity: electric field approaches in time domain.
    Rhee H; Choi JH; Cho M
    Acc Chem Res; 2010 Dec; 43(12):1527-36. PubMed ID: 20931956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy.
    Yang J; Mayyas M; Tang J; Ghasemian MB; Yang H; Watanabe K; Taniguchi T; Ou Q; Li LH; Bao Q; Kalantar-Zadeh K
    ACS Nano; 2020 Jan; 14(1):1123-1132. PubMed ID: 31854973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification.
    Cho H; Felts JR; Yu MF; Bergman LA; Vakakis AF; King WP
    Nanotechnology; 2013 Nov; 24(44):444007. PubMed ID: 24113150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature sensitivity of scattering-type near-field nanoscopic imaging in the visible range.
    Jarzembski A; Shaskey C; Murdick RA; Park K
    Appl Opt; 2019 Mar; 58(8):1978-1983. PubMed ID: 30874064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical frequency comb spectroscopy.
    Foltynowicz A; Masłowski P; Ban T; Adler F; Cossel KC; Briles TC; Ye J
    Faraday Discuss; 2011; 150():23-31; discussion 113-60. PubMed ID: 22457942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.
    D' Archangel J; Tucker E; Kinzel E; Muller EA; Bechtel HA; Martin MC; Raschke MB; Boreman G
    Opt Express; 2013 Jul; 21(14):17150-60. PubMed ID: 23938562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.