These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26292015)
1. Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells. Liu J; Xue Y; Dai L J Phys Chem Lett; 2012 Jul; 3(14):1928-33. PubMed ID: 26292015 [TBL] [Abstract][Full Text] [Related]
2. Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material. Chen L; Du D; Sun K; Hou J; Ouyang J ACS Appl Mater Interfaces; 2014 Dec; 6(24):22334-42. PubMed ID: 25415184 [TBL] [Abstract][Full Text] [Related]
3. Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. Qu S; Li M; Xie L; Huang X; Yang J; Wang N; Yang S ACS Nano; 2013 May; 7(5):4070-81. PubMed ID: 23586816 [TBL] [Abstract][Full Text] [Related]
4. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Li M; Ni W; Kan B; Wan X; Zhang L; Zhang Q; Long G; Zuo Y; Chen Y Phys Chem Chem Phys; 2013 Nov; 15(43):18973-8. PubMed ID: 24097209 [TBL] [Abstract][Full Text] [Related]
5. Sulfanilic Acid Pending on a Graphene Scaffold: Novel, Efficient Synthesis and Much Enhanced Polymer Solar Cell Efficiency and Stability Using It as a Hole Extraction Layer. Zhao FG; Hu CM; Kong YT; Pan B; Yao X; Chu J; Xu ZW; Zuo B; Li WS ACS Appl Mater Interfaces; 2018 Jul; 10(29):24679-24688. PubMed ID: 29968469 [TBL] [Abstract][Full Text] [Related]
6. Graphene Oxide by UV-Ozone Treatment as an Efficient Hole Extraction Layer for Highly Efficient and Stable Polymer Solar Cells. Xia Y; Pan Y; Zhang H; Qiu J; Zheng Y; Chen Y; Huang W ACS Appl Mater Interfaces; 2017 Aug; 9(31):26252-26256. PubMed ID: 28718618 [TBL] [Abstract][Full Text] [Related]
7. Role of Molecular and Interchain Ordering in the Formation of a δ-Hole-Transporting Layer in Organic Solar Cells. Chandrasekaran N; Li C; Singh S; Kumar A; McNeill CR; Huettner S; Kabra D ACS Appl Mater Interfaces; 2020 Jan; 12(3):3806-3814. PubMed ID: 31840485 [TBL] [Abstract][Full Text] [Related]
8. Toward Enhancing Solar Cell Performance: An Effective and "Green" Additive. Tan L; Li P; Zhang Q; Izquierdo R; Chaker M; Ma D ACS Appl Mater Interfaces; 2018 Feb; 10(7):6498-6504. PubMed ID: 29401370 [TBL] [Abstract][Full Text] [Related]
9. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS; Tu KH; Lin CC; Chen CW; Chhowalla M ACS Nano; 2010 Jun; 4(6):3169-74. PubMed ID: 20481512 [TBL] [Abstract][Full Text] [Related]
10. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. Hsu CL; Lin CT; Huang JH; Chu CW; Wei KH; Li LJ ACS Nano; 2012 Jun; 6(6):5031-9. PubMed ID: 22632158 [TBL] [Abstract][Full Text] [Related]
11. In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells. Hu A; Wang Q; Chen L; Hu X; Zhang Y; Wu Y; Chen Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):16078-85. PubMed ID: 26143932 [TBL] [Abstract][Full Text] [Related]
12. Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer. Yu JC; Jang JI; Lee BR; Lee GW; Han JT; Song MH ACS Appl Mater Interfaces; 2014 Feb; 6(3):2067-73. PubMed ID: 24433032 [TBL] [Abstract][Full Text] [Related]
13. Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells. Zhao X; Xu C; Wang H; Chen F; Zhang W; Zhao Z; Chen L; Yang S ACS Appl Mater Interfaces; 2014 Mar; 6(6):4329-37. PubMed ID: 24575873 [TBL] [Abstract][Full Text] [Related]
14. Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells. Tan Z; Zhang W; Cui C; Ding Y; Qian D; Xu Q; Li L; Li S; Li Y Phys Chem Chem Phys; 2012 Nov; 14(42):14589-95. PubMed ID: 23014522 [TBL] [Abstract][Full Text] [Related]
15. Effects of Ga- and Al-codoped ZnO buffer layer on the performance of inverted polymer solar cells. Lee SJ; Kim DH; Kang JK; Kim DY; Kim HM; Han YS J Nanosci Nanotechnol; 2013 Dec; 13(12):7839-43. PubMed ID: 24266149 [TBL] [Abstract][Full Text] [Related]
16. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
17. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. Liu Z; Li J; Sun ZH; Tai G; Lau SP; Yan F ACS Nano; 2012 Jan; 6(1):810-8. PubMed ID: 22148872 [TBL] [Abstract][Full Text] [Related]
18. Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. Yin B; Liu Q; Yang L; Wu X; Liu Z; Hua Y; Yin S; Chen Y J Nanosci Nanotechnol; 2010 Mar; 10(3):1934-8. PubMed ID: 20355603 [TBL] [Abstract][Full Text] [Related]
19. Noncovalent phosphorylation of graphene oxide with improved hole transport in high-efficiency polymer solar cells. Chen X; Liu Q; Zhang M; Ju H; Zhu J; Qiao Q; Wang M; Yang S Nanoscale; 2018 Aug; 10(31):14840-14846. PubMed ID: 30051897 [TBL] [Abstract][Full Text] [Related]
20. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications. Li W; Lee T; Oh SJ; Kagan CR ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]