These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26292113)

  • 1. Pyrite Nanocrystal Solar Cells: Promising, or Fool's Gold?
    Steinhagen C; Harvey TB; Stolle CJ; Harris J; Korgel BA
    J Phys Chem Lett; 2012 Sep; 3(17):2352-6. PubMed ID: 26292113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics.
    Puthussery J; Seefeld S; Berry N; Gibbs M; Law M
    J Am Chem Soc; 2011 Feb; 133(4):716-9. PubMed ID: 21175173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical and electronic properties of pyrite nanocrystal thin films: the role of ligands.
    Li W; Dittrich T; Jäckel F; Feldmann J
    Small; 2014 Mar; 10(6):1194-201. PubMed ID: 24395590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled colloidal synthesis of iron pyrite FeS2 nanorods and quasi-cubic nanocrystal agglomerates.
    Zhu L; Richardson BJ; Yu Q
    Nanoscale; 2014 Jan; 6(2):1029-37. PubMed ID: 24292332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry-defying iron pyrite (FeS₂) nanocrystals through oriented attachment.
    Gong M; Kirkeminde A; Ren S
    Sci Rep; 2013; 3():2092. PubMed ID: 23807691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron sulfide ink for the growth of pyrite crystals.
    Kirkeminde A; Gingrich P; Gong M; Cui H; Ren S
    Nanotechnology; 2014 May; 25(20):205603. PubMed ID: 24785778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron pyrite thin films synthesized from an Fe(acac)3 ink.
    Seefeld S; Limpinsel M; Liu Y; Farhi N; Weber A; Zhang Y; Berry N; Kwon YJ; Perkins CL; Hemminger JC; Wu R; Law M
    J Am Chem Soc; 2013 Mar; 135(11):4412-24. PubMed ID: 23398377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals.
    Stolle CJ; Panthani MG; Harvey TB; Akhavan VA; Korgel BA
    ACS Appl Mater Interfaces; 2012 May; 4(5):2757-61. PubMed ID: 22524385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells.
    Liu L; Liu C; Fu W; Deng L; Zhong H
    Chemphyschem; 2016 Mar; 17(5):771-6. PubMed ID: 26337257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid polymer-nanocrystal materials for photovoltaic applications.
    Zhou R; Xue J
    Chemphyschem; 2012 Jul; 13(10):2471-80. PubMed ID: 22461231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties.
    Zhang X; Scott T; Socha T; Nielsen D; Manno M; Johnson M; Yan Y; Losovyj Y; Dowben P; Aydil ES; Leighton C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14130-9. PubMed ID: 26087015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of nanocrystal spray deposition on inorganic solar cells.
    Townsend TK; Yoon W; Foos EE; Tischler JG
    ACS Appl Mater Interfaces; 2014 May; 6(10):7902-9. PubMed ID: 24755091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-pure iron pyrite nanocrystals for low-cost photodetectors.
    Liu S; Wu J; Yu P; Ding Q; Zhou Z; Li H; Lai CC; Chueh YL; Wang ZM
    Nanoscale Res Lett; 2014; 9(1):549. PubMed ID: 25317102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction.
    Williams BA; Mahajan A; Smeaton MA; Holgate CS; Aydil ES; Francis LF
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11526-35. PubMed ID: 25989610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas.
    Thimsen E; Johnson M; Zhang X; Wagner AJ; Mkhoyan KA; Kortshagen UR; Aydil ES
    Nat Commun; 2014 Dec; 5():5822. PubMed ID: 25524320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application.
    Bi Y; Yuan Y; Exstrom CL; Darveau SA; Huang J
    Nano Lett; 2011 Nov; 11(11):4953-7. PubMed ID: 21992489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Iron Pyrite Thin Films and Photovoltaic Devices by Sulfurization in Electrodeposition Method.
    Lu Z; Zhou H; Ye C; Chen S; Ning J; Halim MA; Donaev SB; Wang S
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Nano-Rod Arrays of Pyrite Thin Films Prepared by Aqueous Chemical Growth and a Subsequent Sulfurization.
    Talaeizadeh M; Seyyed Ebrahimi SA; Khosravi P; Hamawandi B
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.
    Zhou R; Stalder R; Xie D; Cao W; Zheng Y; Yang Y; Plaisant M; Holloway PH; Schanze KS; Reynolds JR; Xue J
    ACS Nano; 2013 Jun; 7(6):4846-54. PubMed ID: 23668301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.