BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26292114)

  • 1. Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria.
    Fujita T; Brookes JC; Saikin SK; Aspuru-Guzik A
    J Phys Chem Lett; 2012 Sep; 3(17):2357-61. PubMed ID: 26292114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria.
    Linnanto JM; Korppi-Tommola JE
    J Phys Chem B; 2013 Sep; 117(38):11144-61. PubMed ID: 23848459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome.
    Dostál J; Vácha F; Pšenčík J; Zigmantas D
    J Phys Chem Lett; 2014 May; 5(10):1743-7. PubMed ID: 26270377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent Exciton Dynamics in the Presence of Underdamped Vibrations.
    Dijkstra AG; Wang C; Cao J; Fleming GR
    J Phys Chem Lett; 2015 Feb; 6(4):627-32. PubMed ID: 26262477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and ionic strength effects on the chlorosome light-harvesting antenna complex.
    Tang KH; Zhu L; Urban VS; Collins AM; Biswas P; Blankenship RE
    Langmuir; 2011 Apr; 27(8):4816-28. PubMed ID: 21405043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes.
    Dostál J; Mančal T; Augulis R; Vácha F; Pšenčík J; Zigmantas D
    J Am Chem Soc; 2012 Jul; 134(28):11611-7. PubMed ID: 22690836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria.
    Fujita T; Huh J; Saikin SK; Brookes JC; Aspuru-Guzik A
    Photosynth Res; 2014 Jun; 120(3):273-89. PubMed ID: 24504540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria.
    Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H
    Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.
    Fetisova Z; Freiberg A; Mauring K; Novoderezhkin V; Taisova A; Timpmann K
    Biophys J; 1996 Aug; 71(2):995-1010. PubMed ID: 8842237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient exciton transport in layers of self-assembled porphyrin derivatives.
    Huijser A; Suijkerbuijk BM; Klein Gebbink RJ; Savenije TJ; Siebbeles LD
    J Am Chem Soc; 2008 Feb; 130(8):2485-92. PubMed ID: 18247606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functioning of oligomeric-type light-harvesting antenna.
    Timpmann KE; Taisova AS; Novoderezhkin VI; Fetisova ZG
    Biochem Mol Biol Int; 1997 Jun; 42(1):21-7. PubMed ID: 9192081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of
    Frehan SK; Dsouza L; Li X; Eríc V; Jansen TLC; Mul G; Holzwarth AR; Buda F; Sevink GJA; de Groot HJM; Huijser A
    J Phys Chem B; 2023 Sep; 127(35):7581-7589. PubMed ID: 37611240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum.
    Valleau S; Saikin SK; Ansari-Oghol-Beig D; Rostami M; Mossallaei H; Aspuru-Guzik A
    ACS Nano; 2014 Apr; 8(4):3884-94. PubMed ID: 24641680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Light-Harvesting Aggregates in Individual Chlorosomes.
    Günther LM; Jendrny M; Bloemsma EA; Tank M; Oostergetel GT; Bryant DA; Knoester J; Köhler J
    J Phys Chem B; 2016 Jun; 120(24):5367-76. PubMed ID: 27240572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria.
    Furumaki S; Vacha F; Habuchi S; Tsukatani Y; Bryant DA; Vacha M
    J Am Chem Soc; 2011 May; 133(17):6703-10. PubMed ID: 21476570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.
    Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A
    J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond probe of structural analogies between chlorosomes and bacteriochlorophyll c aggregates.
    Savikhin S; van Noort PI; Blankenship RE; Struve WS
    Biophys J; 1995 Sep; 69(3):1100-4. PubMed ID: 8519963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Dark States in Two-Dimensional Electronic Spectra of Chlorosomes.
    Erić V; Li X; Dsouza L; Huijser A; Holzwarth AR; Buda F; Sevink GJA; de Groot HJM; Jansen TLC
    J Phys Chem B; 2024 Apr; 128(15):3575-3584. PubMed ID: 38569137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothesis on chlorosome biogenesis in green photosynthetic bacteria.
    Hohmann-Marriott MF; Blankenship RE
    FEBS Lett; 2007 Mar; 581(5):800-3. PubMed ID: 17303128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria.
    Wang J; Brune DC; Blankenship RE
    Biochim Biophys Acta; 1990 Feb; 1015(3):457-63. PubMed ID: 11536463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.