BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26292116)

  • 1. Determination of Singlet Exciton Diffusion Length in Thin Evaporated C60 Films for Photovoltaics.
    Fravventura MC; Hwang J; Suijkerbuijk JW; Erk P; Siebbeles LD; Savenije TJ
    J Phys Chem Lett; 2012 Sep; 3(17):2367-73. PubMed ID: 26292116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
    Dowgiallo AM; Mistry KS; Johnson JC; Reid OG; Blackburn JL
    J Phys Chem Lett; 2016 May; 7(10):1794-9. PubMed ID: 27127916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photogeneration of triplet excitons in an oligothiophene-fullerene blend.
    Schueppel R; Uhrich C; Pfeiffer M; Leo K; Brier E; Reinold E; Baeuerle P
    Chemphyschem; 2007 Jul; 8(10):1497-503. PubMed ID: 17566137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photovoltaic charge generation in organic semiconductors based on long-range energy transfer.
    Coffey DC; Ferguson AJ; Kopidakis N; Rumbles G
    ACS Nano; 2010 Sep; 4(9):5437-45. PubMed ID: 20735062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
    Wilson MW; Rao A; Ehrler B; Friend RH
    Acc Chem Res; 2013 Jun; 46(6):1330-8. PubMed ID: 23656886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.
    Long Y; Hedley GJ; Ruseckas A; Chowdhury M; Roland T; Serrano LA; Cooke G; Samuel IDW
    ACS Appl Mater Interfaces; 2017 May; 9(17):14945-14952. PubMed ID: 28358189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient exciton transport in layers of self-assembled porphyrin derivatives.
    Huijser A; Suijkerbuijk BM; Klein Gebbink RJ; Savenije TJ; Siebbeles LD
    J Am Chem Soc; 2008 Feb; 130(8):2485-92. PubMed ID: 18247606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonadiabatic Exciton and Charge Separation Dynamics at Interfaces of Zinc Phthalocyanine and Fullerene: Orientation Does Matter.
    Liu XY; Li ZW; Fang WH; Cui G
    J Phys Chem A; 2020 Sep; 124(37):7388-7398. PubMed ID: 32853524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton management in organic photovoltaic multidonor energy cascades.
    Griffith OL; Forrest SR
    Nano Lett; 2014 May; 14(5):2353-8. PubMed ID: 24702468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Singlet and Charge-Transfer Excitons on the Open-Circuit Voltage of Rubrene/Fullerene Organic Photovoltaic Device.
    Su WC; Lee CC; Li YZ; Liu SW
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28757-28762. PubMed ID: 27696800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multidimensional View of Charge Transfer Excitons at Organic Donor-Acceptor Interfaces.
    Wang T; Kafle TR; Kattel B; Chan WL
    J Am Chem Soc; 2017 Mar; 139(11):4098-4106. PubMed ID: 28248094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-fullerene acceptors: exciton dissociation with PTCDA versus C60.
    Dutton GJ; Robey SW
    Phys Chem Chem Phys; 2015 Jun; 17(24):15953-62. PubMed ID: 26027544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.
    Chen L; Zhang Q; Lei Y; Zhu F; Wu B; Zhang T; Niu G; Xiong Z; Song Q
    Phys Chem Chem Phys; 2013 Oct; 15(39):16891-7. PubMed ID: 24002235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton diffusion in near-infrared absorbing solution-processed organic thin films.
    Shin HY; Woo JH; Gwon MJ; Barthelemy M; Vomir M; Muto T; Takaishi K; Uchiyama M; Hashizume D; Aoyama T; Kim DW; Yoon S; Bigot JY; Wu JW; Ribierre JC
    Phys Chem Chem Phys; 2013 Feb; 15(8):2867-72. PubMed ID: 23337941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer.
    Markov DE; Amsterdam E; Blom PW; Sieval AB; Hummelen JC
    J Phys Chem A; 2005 Jun; 109(24):5266-74. PubMed ID: 16839049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers.
    Rao A; Wilson MW; Hodgkiss JM; Albert-Seifried S; Bässler H; Friend RH
    J Am Chem Soc; 2010 Sep; 132(36):12698-703. PubMed ID: 20735067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated singlet exciton fission in a semiconducting polymer.
    Musser AJ; Al-Hashimi M; Maiuri M; Brida D; Heeney M; Cerullo G; Friend RH; Clark J
    J Am Chem Soc; 2013 Aug; 135(34):12747-54. PubMed ID: 23883167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Control of Morphology in Fullerene-Based Electron-Conducting Buffers via Organic Vapor Phase Deposition.
    Song B; Forrest SR
    Nano Lett; 2016 Jun; 16(6):3905-10. PubMed ID: 27144912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.