These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26292121)

  • 1. Correlating the Polymorphism of Titanyl Phthalocyanine Thin Films with Solar Cell Performance.
    Vasseur K; Rand BP; Cheyns D; Temst K; Froyen L; Heremans P
    J Phys Chem Lett; 2012 Sep; 3(17):2395-400. PubMed ID: 26292121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells.
    Vasseur K; Broch K; Ayzner AL; Rand BP; Cheyns D; Frank C; Schreiber F; Toney MF; Froyen L; Heremans P
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8505-15. PubMed ID: 23905883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution Processed Titanyl Phthalocyanines as Donors in Solar Cells: Photoresponse to 1000 nm.
    Mayukh M; Macech MR; Placencia D; Cao Y; Armstrong NR; McGrath DV
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23912-9. PubMed ID: 26451458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of titanyl phthalocyanine (TiOPc) thin films by microscopic and spectroscopic method.
    Skonieczny R; Makowiecki J; Bursa B; Krzykowski A; Szybowicz M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():203-210. PubMed ID: 29032345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Design Strategy in Developing Titanyl Phthalocyanines as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells: Peripheral or Nonperipheral Substituents?
    Hu Q; Rezaee E; Li M; Chen Q; Cao Y; Mayukh M; McGrath DV; Xu ZX
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36535-36543. PubMed ID: 31536319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzo[c]thiophene-C60 diadduct: an electron acceptor for p-n junction organic solar cells harvesting visible to near-IR light.
    Zhen Y; Obata N; Matsuo Y; Nakamura E
    Chem Asian J; 2012 Nov; 7(11):2644-9. PubMed ID: 22969054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field assisted effects on molecular orientation and surface morphology of thin titanyl(IV)phthalocyanine films.
    Schuster BE; Basova TV; Peisert H; Chassé T
    Chemphyschem; 2009 Aug; 10(11):1874-81. PubMed ID: 19514029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced Carrier Generation and Recombination Dynamics of a Trilayer Cascade Heterojunction Composed of Poly(3-hexylthiophene), Titanyl Phthalocyanine, and C60.
    Park J; Reid OG; Rumbles G
    J Phys Chem B; 2015 Jun; 119(24):7729-39. PubMed ID: 25895098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells.
    Watters DC; Yi H; Pearson AJ; Kingsley J; Iraqi A; Lidzey D
    Macromol Rapid Commun; 2013 Jul; 34(14):1157-62. PubMed ID: 23737100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer epitaxial growth of lead phthalocyanine and C(70) using CuBr as a templating layer for enhancing the efficiency of organic photovoltaic cells.
    Kim TM; Shim HS; Choi MS; Kim HJ; Kim JJ
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4286-91. PubMed ID: 24575946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells.
    Leblebici SY; Chen TL; Olalde-Velasco P; Yang W; Ma B
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10105-10. PubMed ID: 24041440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes.
    Coppedè N; Valitova I; Mahvash F; Tarabella G; Ranzieri P; Iannotta S; Santato C; Martel R; Cicoira F
    Nanotechnology; 2014 Dec; 25(48):485703. PubMed ID: 25388936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silaindacenodithiophene-based molecular donor: morphological features and use in the fabrication of compositionally tolerant, high-efficiency bulk heterojunction solar cells.
    Love JA; Nagao I; Huang Y; Kuik M; Gupta V; Takacs CJ; Coughlin JE; Qi L; van der Poll TS; Kramer EJ; Heeger AJ; Nguyen TQ; Bazan GC
    J Am Chem Soc; 2014 Mar; 136(9):3597-606. PubMed ID: 24559286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural templating of multiple polycrystalline layers in organic photovoltaic cells.
    Lassiter BE; Lunt RR; Renshaw CK; Forrest SR
    Opt Express; 2010 Sep; 18 Suppl 3():A444-50. PubMed ID: 21165074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphism and phase control in titanyl phthalocyanine thin films grown by supersonic molecular beam deposition.
    Coppedè N; Toccoli T; Pallaoro A; Siviero F; Walzer K; Castriota M; Cazzanelli E; Iannotta S
    J Phys Chem A; 2007 Dec; 111(49):12550-8. PubMed ID: 17999474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells.
    Rong Y; Tang Z; Zhao Y; Zhong X; Venkatesan S; Graham H; Patton M; Jing Y; Guloy AM; Yao Y
    Nanoscale; 2015 Jun; 7(24):10595-9. PubMed ID: 26037081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Molecular Orientation in a Bulk Heterojunction Film by Infrared Reflection Absorption Spectroscopy.
    Chikamatsu T; Shahiduzzaman M; Yamamoto K; Karakawa M; Kuwabara T; Takahashi K; Taima T
    ACS Omega; 2018 May; 3(5):5678-5684. PubMed ID: 31458767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.
    Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX
    J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Donor-acceptor alternating copolymers as donor materials for bulk-heterojunction solar cells: effects of molecular structure on film morphology and device performance.
    Xue L; Li Y; Dong F; Tian W
    Nanotechnology; 2010 Apr; 21(15):155201. PubMed ID: 20299728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.