BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26292164)

  • 1. Anthropomorphic finger antagonistically actuated by SMA plates.
    Engeberg ED; Dilibal S; Vatani M; Choi JW; Lavery J
    Bioinspir Biomim; 2015 Aug; 10(5):056002. PubMed ID: 26292164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
    Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B
    Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.
    Colorado J; Barrientos A; Rossi C; Bahlman JW; Breuer KS
    Bioinspir Biomim; 2012 Sep; 7(3):036006. PubMed ID: 22535882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turtle mimetic soft robot with two swimming gaits.
    Song SH; Kim MS; Rodrigue H; Lee JY; Shim JE; Kim MC; Chu WS; Ahn SH
    Bioinspir Biomim; 2016 May; 11(3):036010. PubMed ID: 27145061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compliant Underwater Manipulator with Integrated Tactile Sensor for Nonlinear Force Feedback Control of an SMA Actuation System.
    Lin M; Vatani M; Choi JW; Dilibal S; Engeberg ED
    Sens Actuators A Phys; 2020 Nov; 315():. PubMed ID: 34629752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing antagonistic systems of artificial muscle using projection stereolithography.
    Peele BN; Wallin TJ; Zhao H; Shepherd RF
    Bioinspir Biomim; 2015 Sep; 10(5):055003. PubMed ID: 26353071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.
    Pillsbury TE; Kothera CS; Wereley NM
    Bioinspir Biomim; 2015 Sep; 10(5):055006. PubMed ID: 26414160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.
    Wickramatunge KC; Leephakpreeda T
    ISA Trans; 2013 Nov; 52(6):825-34. PubMed ID: 23871151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
    Umedachi T; Vikas V; Trimmer BA
    Bioinspir Biomim; 2016 Mar; 11(2):025001. PubMed ID: 26963596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of finger motion range with compliant anthropomorphic joint design.
    Çulha U; Iida F
    Bioinspir Biomim; 2016 Feb; 11(2):026001. PubMed ID: 26891473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape memory alloy-based small crawling robots inspired by C. elegans.
    Yuk H; Kim D; Lee H; Jo S; Shin JH
    Bioinspir Biomim; 2011 Dec; 6(4):046002. PubMed ID: 21992959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical resistivity-based study of self-sensing properties for shape memory alloy-actuated artificial muscle.
    Zhang JJ; Yin YH; Zhu JY
    Sensors (Basel); 2013 Sep; 13(10):12958-74. PubMed ID: 24077316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Laguerre based adaptive predictive control to Shape Memory Alloy (SMA) Actuator.
    Kannan S; Giraud-Audine C; Patoor E
    ISA Trans; 2013 Jul; 52(4):469-79. PubMed ID: 23541523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of SMA actuator for applications in robotic neurosurgery.
    Ho M; Desai JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6856-9. PubMed ID: 19964183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material.
    Yang Y; Chen Y; Li Y; Chen MZQ; Wei Y
    Soft Robot; 2017 Jun; 4(2):147-162. PubMed ID: 29182093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a novel two-finger variable reluctance gripper.
    Chan KK; Cheung NC
    ISA Trans; 2005 Apr; 44(2):177-85. PubMed ID: 15868857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin.
    Kahn JC; Peretz DJ; Tangorra JL
    Bioinspir Biomim; 2015 May; 10(3):036009. PubMed ID: 25985056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators.
    Villanueva A; Smith C; Priya S
    Bioinspir Biomim; 2011 Sep; 6(3):036004. PubMed ID: 21852714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FlexCVA: a continuously variable actuator for active orthotics.
    Horst RW; Marcus RR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2425-8. PubMed ID: 17946511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.