BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 26292183)

  • 1. Autophagy supports color vision.
    Zhou Z; Vinberg F; Schottler F; Doggett TA; Kefalov VJ; Ferguson TA
    Autophagy; 2015; 11(10):1821-32. PubMed ID: 26292183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of rapamycin on rods and cones during light-induced stress in albino mice.
    Kunchithapautham K; Coughlin B; Lemasters JJ; Rohrer B
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):2967-75. PubMed ID: 21273550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses.
    Striebel JF; Race B; Leung JM; Schwartz C; Chesebro B
    Acta Neuropathol Commun; 2021 Jan; 9(1):17. PubMed ID: 33509294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function.
    Busskamp V; Krol J; Nelidova D; Daum J; Szikra T; Tsuda B; Jüttner J; Farrow K; Scherf BG; Alvarez CP; Genoud C; Sothilingam V; Tanimoto N; Stadler M; Seeliger M; Stoffel M; Filipowicz W; Roska B
    Neuron; 2014 Aug; 83(3):586-600. PubMed ID: 25002228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light-induced damage.
    Okano K; Maeda A; Chen Y; Chauhan V; Tang J; Palczewska G; Sakai T; Tsuneoka H; Palczewski K; Maeda T
    J Neurochem; 2012 Apr; 121(1):146-56. PubMed ID: 22220722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish.
    Saade CJ; Alvarez-Delfin K; Fadool JM
    J Neurosci; 2013 Jan; 33(5):1804-14. PubMed ID: 23365220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuronal circuit for colour vision based on rod-cone opponency.
    Joesch M; Meister M
    Nature; 2016 Apr; 532(7598):236-9. PubMed ID: 27049951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a transgenic mouse line lacking photoreceptor development within the ventral retina.
    Fong SL; Criswell MH; Belecky-Adams T; Fong WB; McClintick JN; Kao WW; Edenberg HJ
    Exp Eye Res; 2005 Oct; 81(4):376-88. PubMed ID: 16054133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digoxin-induced retinal degeneration depends on rhodopsin.
    Landfried B; Samardzija M; Barben M; Schori C; Klee K; Storti F; Grimm C
    Cell Death Dis; 2017 Mar; 8(3):e2670. PubMed ID: 28300845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei.
    Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D
    Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why rods and cones?
    Lamb TD
    Eye (Lond); 2016 Feb; 30(2):179-85. PubMed ID: 26563661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated.
    Kamar S; Howlett MHC; Klooster J; Graaff W; Csikós T; Rabelink MJWE; Hoeben RC; Kamermans M
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa.
    John SK; Smith JE; Aguirre GD; Milam AH
    Mol Vis; 2000 Nov; 6():204-15. PubMed ID: 11063754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The occurrence of cone inclusions in the ageing human retina and their possible effect upon vision: an electron microscope study.
    Nag TC; Wadhwa S; Chaudhury S
    Brain Res Bull; 2006 Dec; 71(1-3):224-32. PubMed ID: 17113950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods.
    He F; Agosto MA; Anastassov IA; Tse DY; Wu SM; Wensel TG
    Sci Rep; 2016 Jun; 6():26978. PubMed ID: 27245220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.