These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26292249)

  • 1. High-Temperature Chemistry in Solid Oxide Fuel Cells: In Situ Optical Studies.
    Pomfret MB; Walker RA; Owrutsky JC
    J Phys Chem Lett; 2012 Oct; 3(20):3053-64. PubMed ID: 26292249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ optical studies of solid-oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():151-74. PubMed ID: 20636038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.
    Tippawan P; Arpornwichanop A
    Bioresour Technol; 2014 Apr; 157():231-9. PubMed ID: 24561628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.
    Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S
    ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.
    Pomfret MB; Steinhurst DA; Owrutsky JC
    J Phys Chem Lett; 2013 Apr; 4(8):1310-4. PubMed ID: 26282145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts.
    Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.
    Shao Z; Haile SM; Ahn J; Ronney PD; Zhan Z; Barnett SA
    Nature; 2005 Jun; 435(7043):795-8. PubMed ID: 15944699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposite Catalyst for High-Performance and Durable Intermediate-Temperature Methane-Fueled Metal-Supported Solid Oxide Fuel Cells.
    Liu F; Diercks D; Hussain AM; Dale N; Furuya Y; Miura Y; Fukuyama Y; Duan C
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53840-53849. PubMed ID: 36440888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.
    Su C; Chen Y; Wang W; Ran R; Shao Z; Diniz da Costa JC; Liu S
    Environ Sci Technol; 2014 Jun; 48(12):7122-7. PubMed ID: 24856957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.
    Duan C; Kee RJ; Zhu H; Karakaya C; Chen Y; Ricote S; Jarry A; Crumlin EJ; Hook D; Braun R; Sullivan NP; O'Hayre R
    Nature; 2018 May; 557(7704):217-222. PubMed ID: 29743690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lowering the temperature of solid oxide fuel cells.
    Wachsman ED; Lee KT
    Science; 2011 Nov; 334(6058):935-9. PubMed ID: 22096189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL; Dean AM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells.
    Pomfret MB; Demircan O; Sukeshini AM; Walker RA
    Environ Sci Technol; 2006 Sep; 40(17):5574-9. PubMed ID: 16999142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells.
    Hagen A; Traulsen ML; Kiebach WR; Johansen BS
    J Synchrotron Radiat; 2012 May; 19(Pt 3):400-7. PubMed ID: 22514176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.