BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26292260)

  • 1. A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints.
    Rajabi H; Ghoroubi N; Darvizeh A; Dirks JH; Appel E; Gorb SN
    Bioinspir Biomim; 2015 Aug; 10(5):056003. PubMed ID: 26292260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biaxial mechanical characterization of bat wing skin.
    Skulborstad AJ; Swartz SM; Goulbourne NC
    Bioinspir Biomim; 2015 Apr; 10(3):036004. PubMed ID: 25895436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: numerical modelling.
    Rajabi H; Ghoroubi N; Darvizeh A; Appel E; Gorb SN
    R Soc Open Sci; 2016 Mar; 3(3):150610. PubMed ID: 27069649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.
    Rajabi H; Shafiei A; Darvizeh A; Gorb SN
    Sci Rep; 2016 Dec; 6():39039. PubMed ID: 27966641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
    Rajabi H; Ghoroubi N; Stamm K; Appel E; Gorb SN
    Acta Biomater; 2017 Sep; 60():330-338. PubMed ID: 28739543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane muscle function in the compliant wings of bats.
    Cheney JA; Konow N; Middleton KM; Breuer KS; Roberts TJ; Giblin EL; Swartz SM
    Bioinspir Biomim; 2014 Jun; 9(2):025007. PubMed ID: 24855069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.
    Cheney JA; Konow N; Bearnot A; Swartz SM
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches to the structural modelling of insect wings.
    Wootton RJ; Herbert RC; Young PG; Evans KE
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1577-87. PubMed ID: 14561349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function of resilin in honeybee wings.
    Ma Y; Ning JG; Ren HL; Zhang PF; Zhao HY
    J Exp Biol; 2015 Jul; 218(Pt 13):2136-42. PubMed ID: 25987733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force measurements of flexible tandem wings in hovering and forward flights.
    Zheng Y; Wu Y; Tang H
    Bioinspir Biomim; 2015 Feb; 10(1):016021. PubMed ID: 25656164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid-structure interaction in compliant insect wings.
    Eberle AL; Reinhall PG; Daniel TL
    Bioinspir Biomim; 2014 Jun; 9(2):025005. PubMed ID: 24855064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings.
    Sun JY; Pan CX; Tong J; Zhang J
    IET Nanobiotechnol; 2010 Mar; 4(1):10-8. PubMed ID: 20170254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible flapping wings with self-organized microwrinkles.
    Tanaka H; Okada H; Shimasue Y; Liu H
    Bioinspir Biomim; 2015 Jun; 10(4):046005. PubMed ID: 26119657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.