BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26292626)

  • 1. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces.
    Woo J; Parimal S; Brown MR; Heden R; Cramer SM
    J Chromatogr A; 2015 Sep; 1412():33-42. PubMed ID: 26292626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands.
    Woo JA; Chen H; Snyder MA; Chai Y; Frost RG; Cramer SM
    J Chromatogr A; 2015 Aug; 1407():58-68. PubMed ID: 26162668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermodynamic evaluation of antibody-surface interactions in multimodal cation exchange chromatography.
    Gudhka RB; Roush DJ; Cramer SM
    J Chromatogr A; 2020 Sep; 1628():461479. PubMed ID: 32822997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the impact of aromatic ring substitutions on selectivity for a multimodal anion exchange prototype library.
    Robinson J; Snyder MA; Belisle C; Liao JL; Chen H; He X; Xu Y; Cramer SM
    J Chromatogr A; 2018 Sep; 1569():101-109. PubMed ID: 30041873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Equilibria of Multimodal Chromatography Ligands in Water and Bound to Protein Surfaces.
    Bilodeau CL; Lau EY; Cramer SM; Garde S
    J Phys Chem B; 2019 Jun; 123(23):4833-4843. PubMed ID: 31117605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR models for prediction of chromatographic behavior of homologous Fab variants.
    Robinson JR; Karkov HS; Woo JA; Krogh BO; Cramer SM
    Biotechnol Bioeng; 2017 Jun; 114(6):1231-1240. PubMed ID: 27943241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of Water Near Multimodal Chromatography Ligands and Its Consequences for Modulating Protein-Ligand Interactions.
    Bilodeau CL; Lau EY; Roush DJ; Snyder MA; Cramer SM
    J Phys Chem B; 2021 Jun; 125(23):6112-6120. PubMed ID: 34097423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.
    Karkov HS; Woo J; Krogh BO; Ahmadian H; Cramer SM
    J Chromatogr A; 2015 Dec; 1426():102-9. PubMed ID: 26654254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotherm model discrimination for multimodal chromatography using mechanistic models derived from high-throughput batch isotherm data.
    Altern SH; Welsh JP; Lyall JY; Kocot AJ; Burgess S; Kumar V; Williams C; Lenhoff AM; Cramer SM
    J Chromatogr A; 2023 Mar; 1693():463878. PubMed ID: 36827799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of Multimodal Ligands with Proteins: Insights into Selectivity Using Molecular Dynamics Simulations.
    Parimal S; Garde S; Cramer SM
    Langmuir; 2015 Jul; 31(27):7512-23. PubMed ID: 26030224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Monovalent Cations on the Structure and Dynamics of Multimodal Chromatographic Surfaces.
    Lau SC; Bilodeau CL
    Langmuir; 2024 Apr; 40(13):6694-6702. PubMed ID: 38518252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-dependent elution of uncharged aromatic solutes in ion-exchange chromatography.
    Hirano A; Iwashita K; Sakuraba S; Shiraki K; Arakawa T; Kameda T
    J Chromatogr A; 2018 Apr; 1546():46-55. PubMed ID: 29551239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of molecule size and resin structure on protein adsorption on multimodal anion exchange chromatography media.
    Roberts JA; Kimerer L; Carta G
    J Chromatogr A; 2020 Sep; 1628():461444. PubMed ID: 32822983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing IgG1 F
    Gudhka RB; Vats M; Bilodeau CL; McCallum SA; McCoy MA; Roush DJ; Snyder MA; Cramer SM
    Langmuir; 2021 Oct; 37(41):12188-12203. PubMed ID: 34633195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective displacement chromatography in multimodal cation exchange systems.
    Sheth RD; Morrison CJ; Cramer SM
    J Chromatogr A; 2011 Dec; 1218(51):9250-9. PubMed ID: 22098931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Unique Selectivity of Hydrophobic Cation Exchanger Nuvia cPrime for the Removal of a Major Process Impurity: A Case Study with IgM.
    He XM; Voß C; Li J
    Curr Protein Pept Sci; 2019; 20(1):65-74. PubMed ID: 29046148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. I. Mechanistic evaluation.
    Fogle J; Mohan N; Cheung E; Persson J
    J Chromatogr A; 2012 Feb; 1225():62-9. PubMed ID: 22230172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants.
    Karkov HS; Krogh BO; Woo J; Parimal S; Ahmadian H; Cramer SM
    Biotechnol Bioeng; 2015 Nov; 112(11):2305-15. PubMed ID: 25950863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of multi-modal high-salt binding ion-exchange chromatography using quantitative structure-property relationship modeling.
    Yang T; Breneman CM; Cramer SM
    J Chromatogr A; 2007 Dec; 1175(1):96-105. PubMed ID: 17991474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of guanidine-based multimodal anion exchangers for protein selectivity and orthogonality.
    Koley S; Altern SH; Vats M; Han X; Jang D; Snyder MA; Belisle C; Cramer SM
    J Chromatogr A; 2021 Sep; 1653():462398. PubMed ID: 34280791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.