These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26292629)

  • 1. A simple and efficient dispersion correction to the Hartree-Fock theory (2): Incorporation of a geometrical correction for the basis set superposition error.
    Yoshida T; Hayashi T; Mashima A; Chuman H
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4179-84. PubMed ID: 26292629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and efficient dispersion correction to the Hartree-Fock theory (3): A comprehensive performance comparison of HF-Dtq with MP2 and DFT-Ds.
    Yoshida T; Hayashi T; Mashima A; Sasahara K; Chuman H
    Bioorg Med Chem Lett; 2016 Jan; 26(2):589-593. PubMed ID: 26646216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and efficient dispersion correction to the Hartree-Fock theory.
    Yoshida T; Mashima A; Sasahara K; Chuman H
    Bioorg Med Chem Lett; 2014 Feb; 24(4):1037-42. PubMed ID: 24484898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.
    Kruse H; Grimme S
    J Chem Phys; 2012 Apr; 136(15):154101. PubMed ID: 22519309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Methods for the Quantum Chemical Treatment of Protein Structures: The Effects of London-Dispersion and Basis-Set Incompleteness on Peptide and Water-Cluster Geometries.
    Goerigk L; Reimers JR
    J Chem Theory Comput; 2013 Jul; 9(7):3240-51. PubMed ID: 26583999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recommending Hartree-Fock theory with London-dispersion and basis-set-superposition corrections for the optimization or quantum refinement of protein structures.
    Goerigk L; Collyer CA; Reimers JR
    J Phys Chem B; 2014 Dec; 118(50):14612-26. PubMed ID: 25410613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.
    Brandenburg JG; Grimme S
    Top Curr Chem; 2014; 345():1-23. PubMed ID: 24220994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.
    Brandenburg JG; Alessio M; Civalleri B; Peintinger MF; Bredow T; Grimme S
    J Phys Chem A; 2013 Sep; 117(38):9282-92. PubMed ID: 23947824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds.
    Garza J; Ramírez JZ; Vargas R
    J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular potentials of the methane dimer calculated with Møller-Plesset perturbation theory and density functional theory.
    Li AH; Chao SD
    J Chem Phys; 2006 Sep; 125(9):094312. PubMed ID: 16965085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrected small basis set Hartree-Fock method for large systems.
    Sure R; Grimme S
    J Comput Chem; 2013 Jul; 34(19):1672-85. PubMed ID: 23670872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of basis set superposition error on optimized geometries and complexation energies of organo-alkali metal cation complexes.
    Kim CK; Zhang H; Yoon SH; Won J; Lee MJ; Kim CK
    J Phys Chem A; 2009 Jan; 113(2):513-9. PubMed ID: 19090678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio and analytic intermolecular potentials for Ar-CF4.
    Vayner G; Alexeev Y; Wang J; Windus TL; Hase WL
    J Phys Chem A; 2006 Mar; 110(9):3174-8. PubMed ID: 16509641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion energy evaluated by using locally projected occupied and excited molecular orbitals for molecular interaction.
    Iwata S
    J Chem Phys; 2011 Sep; 135(9):094101. PubMed ID: 21913747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communications: Is quantum chemical treatment of biopolymers accurate? Intramolecular basis set superposition error (BSSE).
    Balabin RM
    J Chem Phys; 2010 Jun; 132(23):231101. PubMed ID: 20572680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of counterpoise correction in many-body molecular clusters of organic compounds: Hartree-Fock interaction energy perspective.
    Nguyen ALP; Izgorodina EI
    J Comput Chem; 2022 Mar; 43(8):568-576. PubMed ID: 35137436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.