These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26292712)

  • 1. Fluorescent nanoparticles for the accurate detection of drug delivery.
    Priem B; Tian C; Tang J; Zhao Y; Mulder WJ
    Expert Opin Drug Deliv; 2015; 12(12):1881-94. PubMed ID: 26292712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent nanoparticles for intracellular sensing: a review.
    Ruedas-Rama MJ; Walters JD; Orte A; Hall EA
    Anal Chim Acta; 2012 Nov; 751():1-23. PubMed ID: 23084048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Live Imaging Using Förster Resonance Energy Transfer (FRET) for Evaluating the Biological Behavior of Nanoparticles as Drug Carriers.
    Ishizawa K; Togami K; Tada H; Chono S
    J Pharm Sci; 2020 Dec; 109(12):3608-3616. PubMed ID: 32926888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration.
    Wen Z; Yan Z; He R; Pang Z; Guo L; Qian Y; Jiang X; Fang L
    Drug Deliv; 2011 Nov; 18(8):555-61. PubMed ID: 21812752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.
    Ding C; Zhu A; Tian Y
    Acc Chem Res; 2014 Jan; 47(1):20-30. PubMed ID: 23911118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles.
    Gravier J; Sancey L; Hirsjärvi S; Rustique E; Passirani C; Benoît JP; Coll JL; Texier I
    Mol Pharm; 2014 Sep; 11(9):3133-44. PubMed ID: 25098740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local Intratracheal Delivery of Perfluorocarbon Nanoparticles to Lung Cancer Demonstrated with Magnetic Resonance Multimodal Imaging.
    Wu L; Wen X; Wang X; Wang C; Sun X; Wang K; Zhang H; Williams T; Stacy AJ; Chen J; Schmieder AH; Lanza GM; Shen B
    Theranostics; 2018; 8(2):563-574. PubMed ID: 29290827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dots and fluorescent protein FRET-based biosensors.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    Adv Exp Med Biol; 2012; 733():63-74. PubMed ID: 22101713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring.
    Yang G; Liu Y; Teng J; Zhao CX
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring.
    Lainé AL; Gravier J; Henry M; Sancey L; Béjaud J; Pancani E; Wiber M; Texier I; Coll JL; Benoit JP; Passirani C
    J Control Release; 2014 Aug; 188():1-8. PubMed ID: 24878182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery.
    Ma Y; Fuchs AV; Boase NR; Rolfe BE; Coombes AG; Thurecht KJ
    Eur J Pharm Biopharm; 2015 Aug; 94():393-403. PubMed ID: 26117186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines.
    Chen T; He B; Tao J; He Y; Deng H; Wang X; Zheng Y
    Adv Drug Deliv Rev; 2019 Mar; 143():177-205. PubMed ID: 31201837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled SLN Delivery by Thermoresponsive In-situ Forming Erodible Gels; A Whole-body and Organ Imaging Study.
    Dorraj G; Dadashzadeh S; Erfan M; Moghimi HR
    Curr Drug Deliv; 2018; 15(4):510-519. PubMed ID: 29422000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Responsive and near-infrared-emissive polymer nanoparticles for simultaneous delivery, release, and fluorescence tracking of doxorubicin in vivo.
    Yu JC; Chen YL; Zhang YQ; Yao XK; Qian CG; Huang J; Zhu S; Jiang XQ; Shen QD; Gu Z
    Chem Commun (Camb); 2014 May; 50(36):4699-702. PubMed ID: 24671329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the use of fluorescent nanoparticles for bioimaging.
    Pratiwi FW; Kuo CW; Chen BC; Chen P
    Nanomedicine (Lond); 2019 Jul; 14(13):1759-1769. PubMed ID: 31298068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
    Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y
    Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeling nanoparticles: Dye leakage and altered cellular uptake.
    Snipstad S; Hak S; Baghirov H; Sulheim E; Mørch Ý; Lélu S; von Haartman E; Bäck M; Nilsson KPR; Klymchenko AS; de Lange Davies C; Åslund AKO
    Cytometry A; 2017 Aug; 91(8):760-766. PubMed ID: 27077940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.