These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 26292727)

  • 1. Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair.
    Shang L; Ma B; Wang F; Li J; Shen S; Li X; Liu H; Ge S
    Cell Prolif; 2020 Nov; 53(11):e12917. PubMed ID: 33001510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically Assembled Nanofiber Scaffold Guides Long Bone Regeneration by Promoting Osteogenic/Chondrogenic Differentiation of Endogenous Mesenchymal Stem Cells.
    Pan H; Wei Y; Zeng C; Yang G; Dong C; Wan W; Chen S
    Small; 2024 Jun; 20(26):e2309868. PubMed ID: 38259052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Regeneration of Osteochondral Tissue by Hierarchical Assembly of Spatially Organized Composite Spheroids.
    Lee J; Lee S; Huh SJ; Kang BJ; Shin H
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103525. PubMed ID: 34806336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantation of Various Cell-Free Matrixes Does Not Contribute to the Restoration of Hyaline Cartilage within Full-Thickness Focal Defects.
    Ibragimova SI; Medvedeva EV; Romanova IA; Istranov LP; Istranova EV; Lychagin AV; Nedorubov AA; Timashev PS; Telpukhov VI; Chagin AS
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular Microgel-Based Bioassembly Scaffold Induced Chondrogenic and Osteogenic Differentiation of BMSCs.
    Wang Y; Yan R; Yang H; Liu Y; Zhong X; Liu S; Xie R; Ren L
    Macromol Biosci; 2024 Apr; ():e2400051. PubMed ID: 38663437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralization of Biomaterials for Bone Tissue Engineering.
    Wu X; Walsh K; Hoff BL; Camci-Unal G
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33092121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan based bioactive materials in tissue engineering applications-A review.
    Islam MM; Shahruzzaman M; Biswas S; Nurus Sakib M; Rashid TU
    Bioact Mater; 2020 Mar; 5(1):164-183. PubMed ID: 32083230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in biomaterials for 3D scaffolds: A review.
    Nikolova MP; Chavali MS
    Bioact Mater; 2019 Dec; 4():271-292. PubMed ID: 31709311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiral Layer-by-Layer Micro-Nanostructured Scaffolds for Bone Tissue Engineering.
    Manoukian OS; Aravamudhan A; Lee P; Arul MR; Yu X; Rudraiah S; Kumbar SG
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2181-2192. PubMed ID: 30976659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization.
    Manoukian OS; Stratton S; Arul MR; Moskow J; Sardashti N; Yu X; Rudraiah S; Kumbar SG
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1792-1805. PubMed ID: 30419159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering.
    Mi HY; Jing X; Napiwocki BN; Hagerty BS; Chen G; Turng LS
    J Mater Chem B; 2017 Jun; 5(22):4137-4151. PubMed ID: 29170715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair.
    Liao J; Tian T; Shi S; Xie X; Ma Q; Li G; Lin Y
    Bone Res; 2017; 5():17018. PubMed ID: 28698817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive polymeric scaffolds for tissue engineering.
    Stratton S; Shelke NB; Hoshino K; Rudraiah S; Kumbar SG
    Bioact Mater; 2016 Dec; 1(2):93-108. PubMed ID: 28653043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis.
    Hwang HS; Kim HA
    Int J Mol Sci; 2015 Oct; 16(11):26035-54. PubMed ID: 26528972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds.
    Lee P; Tran K; Zhou G; Bedi A; Shelke NB; Yu X; Kumbar SG
    Soft Matter; 2015 Oct; 11(38):7648-55. PubMed ID: 26292727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration.
    Lee P; Tran K; Chang W; Shelke NB; Kumbar SG; Yu X
    J Biomed Nanotechnol; 2014 Aug; 10(8):1469-79. PubMed ID: 25016647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.
    Sawatjui N; Damrongrungruang T; Leeanansaksiri W; Jearanaikoon P; Hongeng S; Limpaiboon T
    Mater Sci Eng C Mater Biol Appl; 2015; 52():90-6. PubMed ID: 25953544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering.
    Xing SC; Liu Y; Feng Y; Jiang C; Hu YQ; Sun W; Wang XH; Wei ZY; Qi M; Liu J; Zhai LJ; Wang ZQ
    Cell Biol Int; 2015 Mar; 39(3):300-9. PubMed ID: 25319137
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.