These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 26292727)
1. Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds. Lee P; Tran K; Zhou G; Bedi A; Shelke NB; Yu X; Kumbar SG Soft Matter; 2015 Oct; 11(38):7648-55. PubMed ID: 26292727 [TBL] [Abstract][Full Text] [Related]
2. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. Lee P; Tran K; Chang W; Shelke NB; Kumbar SG; Yu X J Biomed Nanotechnol; 2014 Aug; 10(8):1469-79. PubMed ID: 25016647 [TBL] [Abstract][Full Text] [Related]
3. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
4. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Sawatjui N; Damrongrungruang T; Leeanansaksiri W; Jearanaikoon P; Hongeng S; Limpaiboon T Mater Sci Eng C Mater Biol Appl; 2015; 52():90-6. PubMed ID: 25953544 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering. Xing SC; Liu Y; Feng Y; Jiang C; Hu YQ; Sun W; Wang XH; Wei ZY; Qi M; Liu J; Zhai LJ; Wang ZQ Cell Biol Int; 2015 Mar; 39(3):300-9. PubMed ID: 25319137 [TBL] [Abstract][Full Text] [Related]
6. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Lee YH; Wu HC; Yeh CW; Kuan CH; Liao HT; Hsu HC; Tsai JC; Sun JS; Wang TW Acta Biomater; 2017 Nov; 63():210-226. PubMed ID: 28899816 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
8. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. Chen K; Shi P; Teh TK; Toh SL; Goh JCh J Tissue Eng Regen Med; 2016 Apr; 10(4):284-93. PubMed ID: 23413023 [TBL] [Abstract][Full Text] [Related]
9. Multi-Layered Scaffolds for Osteochondral Tissue Engineering: In Vitro Response of Co-Cultured Human Mesenchymal Stem Cells. Amadori S; Torricelli P; Panzavolta S; Parrilli A; Fini M; Bigi A Macromol Biosci; 2015 Nov; 15(11):1535-45. PubMed ID: 26126665 [TBL] [Abstract][Full Text] [Related]
10. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of chondrogenic differentiation of rabbit mesenchymal stem cells by oriented nanofiber yarn-collagen type I/hyaluronate hybrid. Zheng X; Wang W; Liu S; Wu J; Li F; Cao L; Liu XD; Mo X; Fan C Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1071-6. PubMed ID: 26478405 [TBL] [Abstract][Full Text] [Related]
12. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. Chen WC; Wei YH; Chu IM; Yao CL J Tissue Eng Regen Med; 2013 Aug; 7(8):665-72. PubMed ID: 22408003 [TBL] [Abstract][Full Text] [Related]
13. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. Deng T; Lv J; Pang J; Liu B; Ke J J Tissue Eng Regen Med; 2014 Jul; 8(7):546-56. PubMed ID: 22777833 [TBL] [Abstract][Full Text] [Related]
14. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Sartori M; Pagani S; Ferrari A; Costa V; Carina V; Figallo E; Maltarello MC; Martini L; Fini M; Giavaresi G Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):101-111. PubMed ID: 27770869 [TBL] [Abstract][Full Text] [Related]
15. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo. Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds. Schagemann JC; Paul S; Casper ME; Rohwedel J; Kramer J; Kaps C; Mittelstaedt H; Fehr M; Reinholz GG J Biomed Mater Res A; 2013 Jun; 101(6):1620-8. PubMed ID: 23184542 [TBL] [Abstract][Full Text] [Related]
17. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds. Yeh HY; Lin TY; Lin CH; Yen BL; Tsai CL; Hsu SH Differentiation; 2013; 86(4-5):171-83. PubMed ID: 24462469 [TBL] [Abstract][Full Text] [Related]
18. Chondroitin Sulfate and Hyaluronic Acid-Based PolyHIPE Scaffolds for Improved Osteogenesis and Chondrogenesis Behere I; Vaidya A; Ingavle G ACS Appl Bio Mater; 2024 Aug; 7(8):5222-5236. PubMed ID: 39007280 [TBL] [Abstract][Full Text] [Related]
19. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
20. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. Meng F; He A; Zhang Z; Zhang Z; Lin Z; Yang Z; Long Y; Wu G; Kang Y; Liao W J Biomed Mater Res A; 2014 Aug; 102(8):2725-35. PubMed ID: 24026971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]