These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26292727)

  • 21. In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system.
    Li JW; Guo XL; He CL; Tuo YH; Wang Z; Wen J; Jin D
    Chin Med J (Engl); 2011 Oct; 124(19):3080-6. PubMed ID: 22040560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds.
    Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y
    Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repairing cartilage defects with bone marrow mesenchymal stem cells induced by CDMP and TGF-β1.
    Wu G; Cui Y; Ma L; Pan X; Wang X; Zhang B
    Cell Tissue Bank; 2014 Mar; 15(1):51-7. PubMed ID: 23460257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.
    Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F
    Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model.
    Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH
    Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering osteochondral constructs through spatial regulation of endochondral ossification.
    Sheehy EJ; Vinardell T; Buckley CT; Kelly DJ
    Acta Biomater; 2013 Mar; 9(3):5484-92. PubMed ID: 23159563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect.
    Li X; Li Y; Zuo Y; Qu D; Liu Y; Chen T; Jiang N; Li H; Li J
    J Biomed Mater Res A; 2015 Oct; 103(10):3226-36. PubMed ID: 25772000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro generation of whole osteochondral constructs using rabbit bone marrow stromal cells, employing a two-chambered co-culture well design.
    Chen K; Ng KS; Ravi S; Goh JC; Toh SL
    J Tissue Eng Regen Med; 2016 Apr; 10(4):294-304. PubMed ID: 23495238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study.
    Im GI; Ahn JH; Kim SY; Choi BS; Lee SW
    Tissue Eng Part A; 2010 Apr; 16(4):1189-200. PubMed ID: 19883204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair.
    Shang L; Ma B; Wang F; Li J; Shen S; Li X; Liu H; Ge S
    Cell Prolif; 2020 Nov; 53(11):e12917. PubMed ID: 33001510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The primordium of a biological joint replacement: Coupling of two stem cell pathways in biphasic ultrarapid compressed gel niches.
    Brady MA; Sivananthan S; Mudera V; Liu Q; Wiltfang J; Warnke PH
    J Craniomaxillofac Surg; 2011 Jul; 39(5):380-6. PubMed ID: 20810288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo.
    Prosecká E; Rampichová M; Litvinec A; Tonar Z; Králíčková M; Vojtová L; Kochová P; Plencner M; Buzgo M; Míčková A; Jančář J; Amler E
    J Biomed Mater Res A; 2015 Feb; 103(2):671-82. PubMed ID: 24838634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular GAG-like Self-Assembled Glycopeptide Nanofibers Induce Chondrogenesis and Cartilage Regeneration.
    Ustun Yaylaci S; Sardan Ekiz M; Arslan E; Can N; Kilic E; Ozkan H; Orujalipoor I; Ide S; Tekinay AB; Guler MO
    Biomacromolecules; 2016 Feb; 17(2):679-89. PubMed ID: 26716910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits.
    Zhu S; Zhang B; Man C; Ma Y; Liu X; Hu J
    Cell Transplant; 2014 Apr; 23(6):715-27. PubMed ID: 24763260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-step method of constructing mature cartilage using bone marrow-derived mesenchymal stem cells.
    Xue K; Qi L; Zhou G; Liu K
    Cells Tissues Organs; 2013; 197(6):484-95. PubMed ID: 23615268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine.
    Keller L; Wagner Q; Schwinté P; Benkirane-Jessel N
    Nanomedicine (Lond); 2015; 10(18):2833-45. PubMed ID: 26377156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue.
    Babur BK; Futrega K; Lott WB; Klein TJ; Cooper-White J; Doran MR
    Cell Tissue Res; 2015 Sep; 361(3):755-68. PubMed ID: 25924853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.