These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 26293606)

  • 1. Structural and functional liaisons between transposable elements and satellite DNAs.
    Meštrović N; Mravinac B; Pavlek M; Vojvoda-Zeljko T; Šatović E; Plohl M
    Chromosome Res; 2015 Sep; 23(3):583-96. PubMed ID: 26293606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements.
    Satović E; Vojvoda Zeljko T; Luchetti A; Mantovani B; Plohl M
    BMC Genomics; 2016 Dec; 17(1):997. PubMed ID: 27919246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair.
    Louzada S; Lopes M; Ferreira D; Adega F; Escudeiro A; Gama-Carvalho M; Chaves R
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31936645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive DNA in eukaryotic genomes.
    Biscotti MA; Olmo E; Heslop-Harrison JS
    Chromosome Res; 2015 Sep; 23(3):415-20. PubMed ID: 26514350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA.
    McGurk MP; Barbash DA
    Genome Res; 2018 May; 28(5):714-725. PubMed ID: 29588362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA.
    Samoluk SS; Chalup LMI; Chavarro C; Robledo G; Bertioli DJ; Jackson SA; Seijo G
    Planta; 2019 May; 249(5):1405-1415. PubMed ID: 30680457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes.
    Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N
    Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rex Retroelements and Teleost Genomes: An Overview.
    Carducci F; Barucca M; Canapa A; Biscotti MA
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis.
    Dias GB; Svartman M; Delprat A; Ruiz A; Kuhn GC
    Genome Biol Evol; 2014 May; 6(6):1302-13. PubMed ID: 24858539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats.
    Palacios-Gimenez OM; Koelman J; Palmada-Flores M; Bradford TM; Jones KK; Cooper SJB; Kawakami T; Suh A
    BMC Biol; 2020 Dec; 18(1):199. PubMed ID: 33349252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing.
    da Silva MJ; Fogarin Destro R; Gazoni T; Narimatsu H; Pereira Dos Santos PS; Haddad CFB; Parise-Maltempi PP
    Cytogenet Genome Res; 2020; 160(3):141-147. PubMed ID: 32146462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome.
    Zattera ML; Bruschi DP
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Computational approaches for identification and classification of transposable elements in eukaryotic genomes].
    Xu HE; Zhang HH; Han MJ; Shen YH; Huang XZ; Xiang ZH; Zhang Z
    Yi Chuan; 2012 Aug; 34(8):1009-19. PubMed ID: 22917906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Special Issue: Repetitive DNA Sequences.
    Lower SE; Dion-Côté AM; Clark AG; Barbash DA
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31698818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements.
    Vojvoda Zeljko T; Pavlek M; Meštrović N; Plohl M
    Sci Rep; 2020 Sep; 10(1):15107. PubMed ID: 32934255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extensive amplification of heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis.
    Pereira JA; Milani D; Ferretti ABSM; Bardella VB; Cabral-de-Mello DC; Lopes DM
    Chromosoma; 2021 Dec; 130(4):251-262. PubMed ID: 34837120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile genetic elements as natural tools for genome evolution.
    Miller WJ; Capy P
    Methods Mol Biol; 2004; 260():1-20. PubMed ID: 15020798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and sequence diversity of eukaryotic transposable elements.
    Kojima KK
    Genes Genet Syst; 2020 Jan; 94(6):233-252. PubMed ID: 30416149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines.
    Silva BSML; Heringer P; Dias GB; Svartman M; Kuhn GCS
    PLoS One; 2019; 14(12):e0223466. PubMed ID: 31856171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and functional annotation of nested transposable elements in eukaryotic genomes.
    Gao C; Xiao M; Ren X; Hayward A; Yin J; Wu L; Fu D; Li J
    Genomics; 2012 Oct; 100(4):222-30. PubMed ID: 22800764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.