BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26293668)

  • 1. TRIM28 as a novel transcriptional elongation factor.
    Bunch H; Calderwood SK
    BMC Mol Biol; 2015 Aug; 16():14. PubMed ID: 26293668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β.
    Resto M; Kim BH; Fernandez AG; Abraham BJ; Zhao K; Lewis BA
    J Biol Chem; 2016 Oct; 291(43):22703-22713. PubMed ID: 27601472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional elongation requires DNA break-induced signalling.
    Bunch H; Lawney BP; Lin YF; Asaithamby A; Murshid A; Wang YE; Chen BP; Calderwood SK
    Nat Commun; 2015 Dec; 6():10191. PubMed ID: 26671524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release.
    Bunch H; Zheng X; Burkholder A; Dillon ST; Motola S; Birrane G; Ebmeier CC; Levine S; Fargo D; Hu G; Taatjes DJ; Calderwood SK
    Nat Struct Mol Biol; 2014 Oct; 21(10):876-83. PubMed ID: 25173174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes.
    Bunch H; Lawney BP; Burkholder A; Ma D; Zheng X; Motola S; Fargo DC; Levine SS; Wang YE; Hu G
    Genomics; 2016 Aug; 108(2):64-77. PubMed ID: 27432546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature of the nucleosomal barrier to RNA polymerase II.
    Kireeva ML; Hancock B; Cremona GH; Walter W; Studitsky VM; Kashlev M
    Mol Cell; 2005 Apr; 18(1):97-108. PubMed ID: 15808512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pausing zone and control of RNA polymerase II elongation by Spt5: Implications for the pause-release model.
    Fong N; Sheridan RM; Ramachandran S; Bentley DL
    Mol Cell; 2022 Oct; 82(19):3632-3645.e4. PubMed ID: 36206739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation.
    Yamada T; Yamaguchi Y; Inukai N; Okamoto S; Mura T; Handa H
    Mol Cell; 2006 Jan; 21(2):227-37. PubMed ID: 16427012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp.
    Bernecky C; Plitzko JM; Cramer P
    Nat Struct Mol Biol; 2017 Oct; 24(10):809-815. PubMed ID: 28892040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super elongation complex contains a TFIIF-related subcomplex.
    Knutson BA; Smith ML; Walker-Kopp N; Xu X
    Transcription; 2016 Aug; 7(4):133-40. PubMed ID: 27223670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5).
    Decker TM
    J Mol Biol; 2021 Jul; 433(14):166657. PubMed ID: 32987031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo.
    Gerber M; Ma J; Dean K; Eissenberg JC; Shilatifard A
    EMBO J; 2001 Nov; 20(21):6104-14. PubMed ID: 11689450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoter-proximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index.
    Paredes SH; Melgar MF; Sethupathy P
    Bioinformatics; 2013 Jun; 29(12):1485-7. PubMed ID: 23047559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic turnover of paused Pol II complexes at human promoters.
    Erickson B; Sheridan RM; Cortazar M; Bentley DL
    Genes Dev; 2018 Sep; 32(17-18):1215-1225. PubMed ID: 30150253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia.
    Yang Y; Lu H; Chen C; Lyu Y; Cole RN; Semenza GL
    Nat Commun; 2022 Jan; 13(1):316. PubMed ID: 35031618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation.
    Fitz J; Neumann T; Pavri R
    EMBO J; 2018 Apr; 37(8):. PubMed ID: 29514850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription pausing regulates mouse embryonic stem cell differentiation.
    Tastemel M; Gogate AA; Malladi VS; Nguyen K; Mitchell C; Banaszynski LA; Bai X
    Stem Cell Res; 2017 Dec; 25():250-255. PubMed ID: 29174978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes.
    Glover-Cutter K; Kim S; Espinosa J; Bentley DL
    Nat Struct Mol Biol; 2008 Jan; 15(1):71-8. PubMed ID: 18157150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.