BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 26293692)

  • 21. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.
    Tundwal A; Kumar H; Binoj BJ; Sharma R; Kumar G; Kumari R; Dhayal A; Yadav A; Singh D; Kumar P
    RSC Adv; 2024 Mar; 14(14):9406-9439. PubMed ID: 38516158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.
    Wang H; Zhu C; Chao D; Yan Q; Fan HJ
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 28940422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material.
    Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S
    ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
    El-Kady MF; Ihns M; Li M; Hwang JY; Mousavi MF; Chaney L; Lech AT; Kaner RB
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4233-8. PubMed ID: 25831542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional graphene-based composites for energy applications.
    Mao S; Lu G; Chen J
    Nanoscale; 2015 Apr; 7(16):6924-43. PubMed ID: 25585233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
    Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High performance Li-ion capacitor fabricated with dual graphene-based materials.
    Sui D; Wu M; Liu Y; Yang Y; Zhang H; Ma Y; Zhang L; Chen Y
    Nanotechnology; 2021 Jan; 32(1):015403. PubMed ID: 32947263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-network-backboned architectures for high-performance lithium storage.
    Gong Y; Yang S; Liu Z; Ma L; Vajtai R; Ajayan PM
    Adv Mater; 2013 Aug; 25(29):3979-84. PubMed ID: 23765711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible supercapacitor electrodes using metal-organic frameworks.
    Cherusseri J; Pandey D; Sambath Kumar K; Thomas J; Zhai L
    Nanoscale; 2020 Sep; 12(34):17649-17662. PubMed ID: 32820760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The application of graphene in lithium ion battery electrode materials.
    Zhu J; Duan R; Zhang S; Jiang N; Zhang Y; Zhu J
    Springerplus; 2014; 3():585. PubMed ID: 25332885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review.
    Sui D; Chang M; Peng Z; Li C; He X; Yang Y; Liu Y; Lu Y
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors.
    Pandey GP; Liu T; Brown E; Yang Y; Li Y; Sun XS; Fang Y; Li J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9200-10. PubMed ID: 27010675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.