These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26293692)

  • 81. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors.
    Li M; Sun G; Yin P; Ruan C; Ai K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11462-70. PubMed ID: 24138545
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nanostructured metal sulfides for energy storage.
    Rui X; Tan H; Yan Q
    Nanoscale; 2014 Sep; 6(17):9889-924. PubMed ID: 25073046
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion.
    Shi H; Wen G; Nie Y; Zhang G; Duan H
    Nanoscale; 2020 Mar; 12(9):5261-5285. PubMed ID: 32091524
    [TBL] [Abstract][Full Text] [Related]  

  • 84. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.
    Zhang J; Shi G; Jiang C; Ju S; Jiang D
    Small; 2015 Dec; 11(46):6197-204. PubMed ID: 26476622
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors.
    Mukherjee S; Ren Z; Singh G
    Nanomicro Lett; 2018; 10(4):70. PubMed ID: 30393718
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Chemical Heterointerface Engineering on Hybrid Electrode Materials for Electrochemical Energy Storage.
    Li W; Song Q; Li M; Yuan Y; Zhang J; Wang N; Yang Z; Huang J; Lu J; Li X
    Small Methods; 2021 Aug; 5(8):e2100444. PubMed ID: 34927864
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Carbon materials for chemical capacitive energy storage.
    Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S
    Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The application of metal-organic frameworks in electrode materials for lithium-ion and lithium-sulfur batteries.
    Zhu JP; Wang XH; Zuo XX
    R Soc Open Sci; 2019 Jul; 6(7):190634. PubMed ID: 31417758
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.
    Peng L; Zhu Y; Li H; Yu G
    Small; 2016 Dec; 12(45):6183-6199. PubMed ID: 27758041
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices.
    Wen L; Li F; Cheng HM
    Adv Mater; 2016 Jun; 28(22):4306-37. PubMed ID: 26748581
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Expanded Graphite-Based Materials for Supercapacitors: A Review.
    Zhang D; Tan C; Zhang W; Pan W; Wang Q; Li L
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163981
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation.
    Wang H; Yuan X; Zeng G; Wu Y; Liu Y; Jiang Q; Gu S
    Adv Colloid Interface Sci; 2015 Jul; 221():41-59. PubMed ID: 25983012
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.
    Ahn W; Lee DU; Li G; Feng K; Wang X; Yu A; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25297-305. PubMed ID: 27603692
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.
    Sheng H; Wei M; D'Aloia A; Wu G
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30212-30224. PubMed ID: 27754661
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.
    Wang S; Wang R; Zhang Y; Zhang L
    Nanotechnology; 2017 Nov; 28(44):445406. PubMed ID: 28783039
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Recent trends in the applications of thermally expanded graphite for energy storage and sensors - a review.
    Murugan P; Nagarajan RD; Shetty BH; Govindasamy M; Sundramoorthy AK
    Nanoscale Adv; 2021 Nov; 3(22):6294-6309. PubMed ID: 36133482
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dual-Carbon Batteries: Materials and Mechanism.
    Chen S; Kuang Q; Fan HJ
    Small; 2020 Oct; 16(40):e2002803. PubMed ID: 32797710
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications.
    Nethravathi C; Rajamathi CR; Rajamathi M; Wang X; Gautam UK; Golberg D; Bando Y
    ACS Nano; 2014 Mar; 8(3):2755-65. PubMed ID: 24527661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.