These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 26294035)
1. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees. Silva LC; Salamanca-Jimenez A; Doane TA; Horwath WR Sci Rep; 2015 Aug; 5():13141. PubMed ID: 26294035 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Hungate BA; Johnson DW; Dijkstra P; Hymus G; Stiling P; Megonigal JP; Pagel AL; Moan JL; Day F; Li J; Hinkle CR; Drake BG Ecology; 2006 Jan; 87(1):26-40. PubMed ID: 16634294 [TBL] [Abstract][Full Text] [Related]
3. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur). Maillard P; Guehl JM; Muller JF; Gross P Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647 [TBL] [Abstract][Full Text] [Related]
4. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
5. Transport of root-respired CO₂ via the transpiration stream affects aboveground carbon assimilation and CO₂ efflux in trees. Bloemen J; McGuire MA; Aubrey DP; Teskey RO; Steppe K New Phytol; 2013 Jan; 197(2):555-565. PubMed ID: 23057485 [TBL] [Abstract][Full Text] [Related]
6. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands. Polley HW; Derner JD; Jackson RB; Gill RA; Procter AC; Fay PA Oecologia; 2015 Jun; 178(2):591-601. PubMed ID: 25604918 [TBL] [Abstract][Full Text] [Related]
7. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Körner C; Asshoff R; Bignucolo O; Hättenschwiler S; Keel SG; Peláez-Riedl S; Pepin S; Siegwolf RT; Zotz G Science; 2005 Aug; 309(5739):1360-2. PubMed ID: 16123297 [TBL] [Abstract][Full Text] [Related]
8. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007 [TBL] [Abstract][Full Text] [Related]
9. Climate warming and tree carbon use efficiency in a whole-tree Drake JE; Furze ME; Tjoelker MG; Carrillo Y; Barton CVM; Pendall E New Phytol; 2019 May; 222(3):1313-1324. PubMed ID: 30840319 [TBL] [Abstract][Full Text] [Related]
10. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Reef R; Winter K; Morales J; Adame MF; Reef DL; Lovelock CE Physiol Plant; 2015 Jul; 154(3):358-68. PubMed ID: 25263409 [TBL] [Abstract][Full Text] [Related]
11. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Jackson RB; Cook CW; Pippen JS; Palmer SM Ecology; 2009 Dec; 90(12):3352-66. PubMed ID: 20120805 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Norby RJ; Iversen CM Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292 [TBL] [Abstract][Full Text] [Related]
13. Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation and growth of winter wheat under nitrate and ammonium fertilization. Dier M; Meinen R; Erbs M; Kollhorst L; Baillie CK; Kaufholdt D; Kücke M; Weigel HJ; Zörb C; Hänsch R; Manderscheid R Glob Chang Biol; 2018 Jan; 24(1):e40-e54. PubMed ID: 28715112 [TBL] [Abstract][Full Text] [Related]
14. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. Weigt RB; Häberle KH; Millard P; Metzger U; Ritter W; Blaschke H; Göttlein A; Matyssek R Tree Physiol; 2012 Oct; 32(10):1259-73. PubMed ID: 23042769 [TBL] [Abstract][Full Text] [Related]
15. Influence of tree internal N status on uptake and translocation of C and N in beech: a dual 13C and 15N labeling approach. Dyckmans J; Flessa H Tree Physiol; 2001 Apr; 21(6):395-401. PubMed ID: 11282579 [TBL] [Abstract][Full Text] [Related]
16. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning. Viktor A; Cramer MD New Phytol; 2005 Jan; 165(1):157-69. PubMed ID: 15720630 [TBL] [Abstract][Full Text] [Related]
17. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide. Springer CJ; DeLucia EH; Thomas RB Tree Physiol; 2005 Apr; 25(4):385-94. PubMed ID: 15687087 [TBL] [Abstract][Full Text] [Related]
18. Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration. Dyckmans J; Flessa H Tree Physiol; 2002 Jan; 22(1):41-9. PubMed ID: 11772554 [TBL] [Abstract][Full Text] [Related]
19. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
20. Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland. Hungate BA; Day FP; Dijkstra P; Duval BD; Hinkle CR; Langley JA; Megonigal JP; Stiling P; Johnson DW; Drake BG New Phytol; 2013 Nov; 200(3):767-777. PubMed ID: 23869799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]