These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26294274)

  • 1. Filling the gap: Micro-C accesses the nucleosomal fiber at 100-1000 bp resolution.
    Mozziconacci J; Koszul R
    Genome Biol; 2015 Aug; 16(1):169. PubMed ID: 26294274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C.
    Hsieh TH; Weiner A; Lajoie B; Dekker J; Friedman N; Rando OJ
    Cell; 2015 Jul; 162(1):108-19. PubMed ID: 26119342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome.
    Hsieh TS; Fudenberg G; Goloborodko A; Rando OJ
    Nat Methods; 2016 Dec; 13(12):1009-1011. PubMed ID: 27723753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics. Micro-C maps of genome structure.
    de Souza N
    Nat Methods; 2015 Sep; 12(9):812. PubMed ID: 26554092
    [No Abstract]   [Full Text] [Related]  

  • 5. A chemical approach to mapping nucleosomes at base pair resolution in yeast.
    Brogaard KR; Xi L; Wang JP; Widom J
    Methods Enzymol; 2012; 513():315-34. PubMed ID: 22929776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome positions alone can be used to predict domains in yeast chromosomes.
    Wiese O; Marenduzzo D; Brackley CA
    Proc Natl Acad Sci U S A; 2019 Aug; 116(35):17307-17315. PubMed ID: 31416914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome positioning by genomic excluding-energy barriers.
    Milani P; Chevereau G; Vaillant C; Audit B; Haftek-Terreau Z; Marilley M; Bouvet P; Argoul F; Arneodo A
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22257-62. PubMed ID: 20018700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.
    Mavrich TN; Ioshikhes IP; Venters BJ; Jiang C; Tomsho LP; Qi J; Schuster SC; Albert I; Pugh BF
    Genome Res; 2008 Jul; 18(7):1073-83. PubMed ID: 18550805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genome folding mechanism in yeast.
    Kimura H; Shimooka Y; Nishikawa J; Miura O; Sugiyama S; Yamada S; Ohyama T
    J Biochem; 2013 Aug; 154(2):137-47. PubMed ID: 23620598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA superstructural features and nucleosomal organization of the two centromeres of Kluyveromyces lactis chromosome 1 and Saccharomyces cerevisiae chromosome 6.
    Del Cornò M; De Santis P; Sampaolese B; Savino M
    FEBS Lett; 1998 Jul; 431(1):66-70. PubMed ID: 9684867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques.
    Bystricky K; Heun P; Gehlen L; Langowski J; Gasser SM
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16495-500. PubMed ID: 15545610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization.
    Radman-Livaja M; Ruben G; Weiner A; Friedman N; Kamakaka R; Rando OJ
    EMBO J; 2011 Mar; 30(6):1012-26. PubMed ID: 21336256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae.
    Lantermann AB; Straub T; Strålfors A; Yuan GC; Ekwall K; Korber P
    Nat Struct Mol Biol; 2010 Feb; 17(2):251-7. PubMed ID: 20118936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae.
    Hamperl S; Brown CR; Garea AV; Perez-Fernandez J; Bruckmann A; Huber K; Wittner M; Babl V; Stoeckl U; Deutzmann R; Boeger H; Tschochner H; Milkereit P; Griesenbeck J
    Nucleic Acids Res; 2014 Jan; 42(1):e2. PubMed ID: 24106087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute nucleosome occupancy map for the
    Oberbeckmann E; Wolff M; Krietenstein N; Heron M; Ellins JL; Schmid A; Krebs S; Blum H; Gerland U; Korber P
    Genome Res; 2019 Dec; 29(12):1996-2009. PubMed ID: 31694866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of interactions between genomic loci through Chromosome Conformation Capture (3C).
    El Kaderi B; Medler S; Ansari A
    Curr Protoc Cell Biol; 2012 Sep; Chapter 22():Unit22.15. PubMed ID: 22968842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae.
    Matsumoto T; Yun CS; Yoshikawa H; Nishida H
    PLoS One; 2011 Jan; 6(1):e16372. PubMed ID: 21297980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes.
    Socol M; Wang R; Jost D; Carrivain P; Vaillant C; Le Cam E; Dahirel V; Normand C; Bystricky K; Victor JM; Gadal O; Bancaud A
    Nucleic Acids Res; 2019 Jul; 47(12):6195-6207. PubMed ID: 31114898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-scale identification of nucleosome positions in S. cerevisiae.
    Yuan GC; Liu YJ; Dion MF; Slack MD; Wu LF; Altschuler SJ; Rando OJ
    Science; 2005 Jul; 309(5734):626-30. PubMed ID: 15961632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.