These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26294542)

  • 1. Validation of the ULCEAT methodology by applying it in retrospect to the Roboticbed.
    Nakamura M; Suzurikawa J; Tsukada S; Kume Y; Kawakami H; Inoue K; Inoue T
    Stud Health Technol Inform; 2015; 217():644-50. PubMed ID: 26294542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human-oriented framework for developing assistive service robots.
    McGinn C; Cullinan MF; Culleton M; Kelly K
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):293-304. PubMed ID: 28537814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A concept of needs-oriented design and evaluation of assistive robots based on ICF.
    Matsumoto Y; Nishida Y; Motomura Y; Okawa Y
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975437. PubMed ID: 22275637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of assistive robotics in the lives of persons with disability.
    Brose SW; Weber DJ; Salatin BA; Grindle GG; Wang H; Vazquez JJ; Cooper RA
    Am J Phys Med Rehabil; 2010 Jun; 89(6):509-21. PubMed ID: 20134305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assistive robots to improve the independent living of older persons: results from a needs study.
    Fiorini L; De Mul M; Fabbricotti I; Limosani R; Vitanza A; D'Onofrio G; Tsui M; Sancarlo D; Giuliani F; Greco A; Guiot D; Senges E; Cavallo F
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):92-102. PubMed ID: 31329000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-construction of an Internet-based intervention for older assistive technology users and their family caregivers: stakeholders' perceptions.
    Gélinas-Bronsard D; Mortenson WB; Ahmed S; Guay C; Auger C
    Disabil Rehabil Assist Technol; 2019 Aug; 14(6):602-611. PubMed ID: 30318939
    [No Abstract]   [Full Text] [Related]  

  • 9. Social service robots to support independent living : Experiences from a field trial.
    Pripfl J; Körtner T; Batko-Klein D; Hebesberger D; Weninger M; Gisinger C
    Z Gerontol Geriatr; 2016 Jun; 49(4):282-7. PubMed ID: 27220733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a future robotic home environment: a survey.
    Güttler J; Georgoulas C; Linner T; Bock T
    Gerontology; 2015; 61(3):268-80. PubMed ID: 25341658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technology acceptance and perceptions of robotic assistive devices by older adults - implications for exoskeleton design.
    Shore L; de Eyto A; O'Sullivan L
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):782-790. PubMed ID: 32988251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a comprehensive evaluation of the impact of electronic aids to daily living: evaluation of consumer satisfaction.
    Shone Stickel M; Ryan S; Rigby PJ; Jutai JW
    Disabil Rehabil; 2002 Jan 10-Feb 15; 24(1-3):115-25. PubMed ID: 11827145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities.
    Prescott TJ; Conran S; Mitchinson B; Cudd P
    Stud Health Technol Inform; 2017; 242():565-572. PubMed ID: 28873854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Assistive Architecture for the Integration of IoT Devices, Robotic Systems, and Multimodal Interfaces in Healthcare Environments.
    Brunete A; Gambao E; Hernando M; Cedazo R
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive brain-computer interface system: towards its application as assistive technology.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Schalk G; Oriolo G; Cherubini A; Marciani MG; Babiloni F
    Brain Res Bull; 2008 Apr; 75(6):796-803. PubMed ID: 18394526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inclusion of service robots in the daily lives of frail older users: A step-by-step definition procedure on users' requirements.
    García-Soler Á; Facal D; Díaz-Orueta U; Pigini L; Blasi L; Qiu R
    Arch Gerontol Geriatr; 2018 Jan; 74():191-196. PubMed ID: 29128788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a robotic workstation for the disabled.
    Hillman M; Jepson J
    J Biomed Eng; 1992 May; 14(3):187-92. PubMed ID: 1534128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A User-Centred Approach Exploring the Potential of a Novel EMG Switch for Control of Assistive Technology.
    Judge S; Nasr N; Hawley M
    Stud Health Technol Inform; 2017; 242():381-384. PubMed ID: 28873827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey on the influence of CYBATHLON on the development and acceptance of advanced assistive technologies.
    Meyer JT; Weber S; Jäger L; Sigrist R; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2022 Apr; 19(1):38. PubMed ID: 35366930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.