These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 26294676)
21. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex. Okabe N; Himi N; Maruyama-Nakamura E; Hayashi N; Narita K; Miyamoto O PLoS One; 2017; 12(11):e0187413. PubMed ID: 29095902 [TBL] [Abstract][Full Text] [Related]
22. Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery. Meyers EC; Solorzano BR; James J; Ganzer PD; Lai ES; Rennaker RL; Kilgard MP; Hays SA Stroke; 2018 Mar; 49(3):710-717. PubMed ID: 29371435 [TBL] [Abstract][Full Text] [Related]
24. Synergistic Effects of Enriched Environment and Task-Specific Reach Training on Poststroke Recovery of Motor Function. Jeffers MS; Corbett D Stroke; 2018 Jun; 49(6):1496-1503. PubMed ID: 29752347 [TBL] [Abstract][Full Text] [Related]
25. Behavioral destabilization induced by the selective serotonin reuptake inhibitor fluoxetine. Kobayashi K; Ikeda Y; Suzuki H Mol Brain; 2011 Mar; 4():12. PubMed ID: 21410937 [TBL] [Abstract][Full Text] [Related]
26. Experience with the "good" limb induces aberrant synaptic plasticity in the perilesion cortex after stroke. Kim SY; Allred RP; Adkins DL; Tennant KA; Donlan NA; Kleim JA; Jones TA J Neurosci; 2015 Jun; 35(22):8604-10. PubMed ID: 26041926 [TBL] [Abstract][Full Text] [Related]
27. Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Adkins DL; Hsu JE; Jones TA Exp Neurol; 2008 Jul; 212(1):14-28. PubMed ID: 18448100 [TBL] [Abstract][Full Text] [Related]
28. Effects of Subdural Monopolar Cortical Stimulation Paired With Rehabilitative Training on Behavioral and Neurophysiological Recovery After Cortical Ischemic Stroke in Adult Squirrel Monkeys. Plautz EJ; Barbay S; Frost SB; Zoubina EV; Stowe AM; Dancause N; Eisner-Janowicz I; Bury SD; Taylor MD; Nudo RJ Neurorehabil Neural Repair; 2016 Feb; 30(2):159-72. PubMed ID: 26704255 [TBL] [Abstract][Full Text] [Related]
29. Constraint Induced Movement Therapy as a Rehabilitative Strategy for Ischemic Stroke-Linking Neural Plasticity with Restoration of Skilled Movements. Nesin SM; Sabitha KR; Gupta A; Laxmi TR J Stroke Cerebrovasc Dis; 2019 Jun; 28(6):1640-1653. PubMed ID: 30904472 [TBL] [Abstract][Full Text] [Related]
30. Combination of NEP 1-40 treatment and motor training enhances behavioral recovery after a focal cortical infarct in rats. Fang PC; Barbay S; Plautz EJ; Hoover E; Strittmatter SM; Nudo RJ Stroke; 2010 Mar; 41(3):544-9. PubMed ID: 20075346 [TBL] [Abstract][Full Text] [Related]
31. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats. Shiromoto T; Okabe N; Lu F; Maruyama-Nakamura E; Himi N; Narita K; Yagita Y; Kimura K; Miyamoto O J Stroke Cerebrovasc Dis; 2017 Feb; 26(2):260-272. PubMed ID: 27743923 [TBL] [Abstract][Full Text] [Related]
33. A novel phosphodiesterase type 4 inhibitor, HT-0712, enhances rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia. MacDonald E; Van der Lee H; Pocock D; Cole C; Thomas N; VandenBerg PM; Bourtchouladze R; Kleim JA Neurorehabil Neural Repair; 2007; 21(6):486-96. PubMed ID: 17823313 [TBL] [Abstract][Full Text] [Related]
34. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Khodaparast N; Hays SA; Sloan AM; Fayyaz T; Hulsey DR; Rennaker RL; Kilgard MP Neurorehabil Neural Repair; 2014 Sep; 28(7):698-706. PubMed ID: 24553102 [TBL] [Abstract][Full Text] [Related]
35. Amphetamine promotes task-dependent recovery following focal cortical ischaemic lesions in the rat. Gilmour G; Iversen SD; O'Neill MF; O'Neill MJ; Ward MA; Bannerman DM Behav Brain Res; 2005 Nov; 165(1):98-109. PubMed ID: 16105695 [TBL] [Abstract][Full Text] [Related]
36. Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Farr TD; Whishaw IQ Stroke; 2002 Jul; 33(7):1869-75. PubMed ID: 12105368 [TBL] [Abstract][Full Text] [Related]
37. Cortical Stimulation Concurrent With Skilled Motor Training Improves Forelimb Function and Enhances Motor Cortical Reorganization Following Controlled Cortical Impact. Jefferson SC; Clayton ER; Donlan NA; Kozlowski DA; Jones TA; Adkins DL Neurorehabil Neural Repair; 2016 Feb; 30(2):155-8. PubMed ID: 26248599 [TBL] [Abstract][Full Text] [Related]
38. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity. Conti E; Scaglione A; de Vito G; Calugi F; Pasquini M; Pizzorusso T; Micera S; Allegra Mascaro AL; Pavone FS Neurorehabil Neural Repair; 2022 Feb; 36(2):107-118. PubMed ID: 34761714 [No Abstract] [Full Text] [Related]
39. Motor system plasticity in stroke models: intrinsically use-dependent, unreliably useful. Jones TA; Allred RP; Jefferson SC; Kerr AL; Woodie DA; Cheng SY; Adkins DL Stroke; 2013 Jun; 44(6 Suppl 1):S104-6. PubMed ID: 23709698 [TBL] [Abstract][Full Text] [Related]
40. Effects of postinfarct myelin-associated glycoprotein antibody treatment on motor recovery and motor map plasticity in squirrel monkeys. Barbay S; Plautz EJ; Zoubina E; Frost SB; Cramer SC; Nudo RJ Stroke; 2015 Jun; 46(6):1620-5. PubMed ID: 25931462 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]