These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26295206)

  • 1. Off-Resonant Optical Excitation of Gold Nanorods: Nanoscale Imprint of Polarization Surface Charge Distribution.
    Deeb C; Zhou X; Gérard D; Bouhelier A; Jain PK; Plain J; Soppera O; Royer P; Bachelot R
    J Phys Chem Lett; 2011 Jan; 2(1):7-11. PubMed ID: 26295206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes.
    Deeb C; Ecoffet C; Bachelot R; Plain J; Bouhelier A; Soppera O
    J Am Chem Soc; 2011 Jul; 133(27):10535-42. PubMed ID: 21618982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants.
    Hutter T; Elliott SR; Mahajan S
    Nanotechnology; 2013 Jan; 24(3):035201. PubMed ID: 23262989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and plasmonic response of self-assembled layers of colloidal gold nanorods and branched gold nanoparticles.
    Schulz KM; Abb S; Fernandes R; Abb M; Kanaras AG; Muskens OL
    Langmuir; 2012 Jun; 28(24):8874-80. PubMed ID: 22401603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative study of the environmental effects on the optical response of gold nanorods.
    Davletshin YR; Lombardi A; Cardinal MF; Juvé V; Crut A; Maioli P; Liz-Marzán LM; Vallée F; Del Fatti N; Kumaradas JC
    ACS Nano; 2012 Sep; 6(9):8183-93. PubMed ID: 22931408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods.
    Bujak Ł; Olejnik M; Brotosudarmo TH; Schmidt MK; Czechowski N; Piatkowski D; Aizpurua J; Cogdell RJ; Heiss W; Mackowski S
    Phys Chem Chem Phys; 2014 May; 16(19):9015-22. PubMed ID: 24695542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of charged-particle surface excitations on near-field optics.
    Kundracik F; Kocifaj M; Videen G; Klačka J
    Appl Opt; 2015 Aug; 54(22):6674-81. PubMed ID: 26368079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates.
    Lee CH; Tian L; Abbas A; Kattumenu R; Singamaneni S
    Nanotechnology; 2011 Jul; 22(27):275311. PubMed ID: 21613732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the optical near field in plasmonic nanostructures.
    Merlen A; Lagugné-Labarthet F
    Appl Spectrosc; 2014; 68(12):1307-26. PubMed ID: 25479143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.