These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26295225)

  • 41. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins.
    Xie H; Vucetic S; Iakoucheva LM; Oldfield CJ; Dunker AK; Obradovic Z; Uversky VN
    J Proteome Res; 2007 May; 6(5):1917-32. PubMed ID: 17391016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structured States of Disordered Proteins from Genomic Sequences.
    Toth-Petroczy A; Palmedo P; Ingraham J; Hopf TA; Berger B; Sander C; Marks DS
    Cell; 2016 Sep; 167(1):158-170.e12. PubMed ID: 27662088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trend of amino acid composition of proteins of different taxa.
    Bogatyreva NS; Finkelstein AV; Galzitskaya OV
    J Bioinform Comput Biol; 2006 Apr; 4(2):597-608. PubMed ID: 16819805
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The intrinsic disorder status of the human hepatitis C virus proteome.
    Fan X; Xue B; Dolan PT; LaCount DJ; Kurgan L; Uversky VN
    Mol Biosyst; 2014 Jun; 10(6):1345-63. PubMed ID: 24752801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome.
    Galea CA; High AA; Obenauer JC; Mishra A; Park CG; Punta M; Schlessinger A; Ma J; Rost B; Slaughter CA; Kriwacki RW
    J Proteome Res; 2009 Jan; 8(1):211-26. PubMed ID: 19067583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionarily conserved and conformationally constrained short peptides might serve as DNA recognition elements in intrinsically disordered regions.
    Tayal N; Choudhary P; Pandit SB; Sandhu KS
    Mol Biosyst; 2014 Jun; 10(6):1469-80. PubMed ID: 24668165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes.
    Singh GP; Ganapathi M; Sandhu KS; Dash D
    Proteins; 2006 Feb; 62(2):309-15. PubMed ID: 16299712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Binary classification of protein molecules into intrinsically disordered and ordered segments.
    Fukuchi S; Hosoda K; Homma K; Gojobori T; Nishikawa K
    BMC Struct Biol; 2011 Jun; 11():29. PubMed ID: 21693062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome.
    Peng Z; Oldfield CJ; Xue B; Mizianty MJ; Dunker AK; Kurgan L; Uversky VN
    Cell Mol Life Sci; 2014 Apr; 71(8):1477-504. PubMed ID: 23942625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteome-wide signatures of function in highly diverged intrinsically disordered regions.
    Zarin T; Strome B; Nguyen Ba AN; Alberti S; Forman-Kay JD; Moses AM
    Elife; 2019 Jul; 8():. PubMed ID: 31264965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Bayesian multinomial classifier to predict whether a given protein sequence is intrinsically disordered.
    Bulashevska A; Eils R
    J Theor Biol; 2008 Oct; 254(4):799-803. PubMed ID: 18611404
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discerning evolutionary trends in post-translational modification and the effect of intrinsic disorder: Analysis of methylation, acetylation and ubiquitination sites in human proteins.
    Narasumani M; Harrison PM
    PLoS Comput Biol; 2018 Aug; 14(8):e1006349. PubMed ID: 30096183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. COPASAAR--a database for proteomic analysis of single amino acid repeats.
    Depledge DP; Dalby AR
    BMC Bioinformatics; 2005 Aug; 6():196. PubMed ID: 16078990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic Analysis of Intrinsically Disordered Proteins in the Genus
    Alshehri MA; Manee MM; Al-Fageeh MB; Al-Shomrani BM
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503351
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repeats in S1 Proteins: Flexibility and Tendency for Intrinsic Disorder.
    Machulin A; Deryusheva E; Lobanov M; Galzitskaya O
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31091666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring Potential Signals of Selection for Disordered Residues in Prokaryotic and Eukaryotic Proteins.
    Panda A; Tuller T
    Genomics Proteomics Bioinformatics; 2020 Oct; 18(5):549-564. PubMed ID: 33346088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights.
    Kumar AS; Sowpati DT; Mishra RK
    PLoS One; 2016; 11(11):e0166854. PubMed ID: 27893794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions.
    Krystkowiak I; Davey NE
    Nucleic Acids Res; 2017 Jul; 45(W1):W464-W469. PubMed ID: 28387819
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein length in eukaryotic and prokaryotic proteomes.
    Brocchieri L; Karlin S
    Nucleic Acids Res; 2005; 33(10):3390-400. PubMed ID: 15951512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting intrinsic disorder from amino acid sequence.
    Obradovic Z; Peng K; Vucetic S; Radivojac P; Brown CJ; Dunker AK
    Proteins; 2003; 53 Suppl 6():566-72. PubMed ID: 14579347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.