BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 26295267)

  • 1. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity.
    Matsushima N; Miyashita H; Enkhbayar P; Kretsinger RH
    Biomolecules; 2015 Aug; 5(3):1955-78. PubMed ID: 26295267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
    Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y
    BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors.
    Batkhishig D; Bilguun K; Enkhbayar P; Miyashita H; Kretsinger RH; Matsushima N
    Protein J; 2018 Jun; 37(3):223-236. PubMed ID: 29651716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding diversity of human innate immunity receptors: analysis of surface features of leucine-rich repeat domains in NLRs and TLRs.
    Istomin AY; Godzik A
    BMC Immunol; 2009 Sep; 10():48. PubMed ID: 19728889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats.
    Batkhishig D; Enkhbayar P; Kretsinger RH; Matsushima N
    Proteins; 2020 Jul; 88(7):840-852. PubMed ID: 31998983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple toll-like receptors (TLRs) display differential bacterial and ligand specificity in the earthworm, Eisenia andrei.
    Park BJ; Yoon YB; Park SC; Shin GS; Kwak HJ; Lee DH; Choi MY; Kim JW; Cho SJ
    J Invertebr Pathol; 2023 Nov; 201():108010. PubMed ID: 37865158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains.
    Mikami T; Miyashita H; Takatsuka S; Kuroki Y; Matsushima N
    Gene; 2012 Jul; 503(2):235-43. PubMed ID: 22587897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LRRfinder2.0: a webserver for the prediction of leucine-rich repeats.
    Offord V; Werling D
    Innate Immun; 2013; 19(4):398-402. PubMed ID: 23178228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profiles of genes involved in TLRs and NLRs signaling pathways of water buffaloes infected with Fasciola gigantica.
    Zhang FK; Hou JL; Guo AJ; Tian AL; Sheng ZA; Zheng WB; Huang WY; Elsheikha HM; Zhu XQ
    Mol Immunol; 2018 Feb; 94():18-26. PubMed ID: 29241030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.
    Ishengoma E; Agaba M
    BMC Evol Biol; 2017 Feb; 17(1):54. PubMed ID: 28209121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR).
    Sahoo BR
    Int J Biol Macromol; 2020 Oct; 161():1602-1617. PubMed ID: 32755705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A leucine-rich repeat assembly approach for homology modeling of the human TLR5-10 and mouse TLR11-13 ectodomains.
    Wei T; Gong J; Rössle SC; Jamitzky F; Heckl WM; Stark RW
    J Mol Model; 2011 Jan; 17(1):27-36. PubMed ID: 20352268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of protein-protein interactions in Toll-like receptor function.
    Berglund NA; Kargas V; Ortiz-Suarez ML; Bond PJ
    Prog Biophys Mol Biol; 2015 Oct; 119(1):72-83. PubMed ID: 26144017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity.
    Ng A; Xavier RJ
    Autophagy; 2011 Sep; 7(9):1082-4. PubMed ID: 21606681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine-rich repeats and calponin homology containing 4 (Lrch4) regulates the innate immune response.
    Aloor JJ; Azzam KM; Guardiola JJ; Gowdy KM; Madenspacher JH; Gabor KA; Mueller GA; Lin WC; Lowe JM; Gruzdev A; Henderson MW; Draper DW; Merrick BA; Fessler MB
    J Biol Chem; 2019 Feb; 294(6):1997-2008. PubMed ID: 30523158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of mouse and human RP105/MD-1 complexes reveal unique dimer organization of the toll-like receptor family.
    Ohto U; Miyake K; Shimizu T
    J Mol Biol; 2011 Nov; 413(4):815-25. PubMed ID: 21959264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TollML: a database of toll-like receptor structural motifs.
    Gong J; Wei T; Zhang N; Jamitzky F; Heckl WM; Rössle SC; Stark RW
    J Mol Model; 2010 Jul; 16(7):1283-9. PubMed ID: 20084417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LRRfinder: a web application for the identification of leucine-rich repeats and an integrative Toll-like receptor database.
    Offord V; Coffey TJ; Werling D
    Dev Comp Immunol; 2010 Oct; 34(10):1035-41. PubMed ID: 20470819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NLRs join TLRs as innate sensors of pathogens.
    Martinon F; Tschopp J
    Trends Immunol; 2005 Aug; 26(8):447-54. PubMed ID: 15967716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure modeling of Toll-like receptors.
    Gong J; Wei T
    Methods Mol Biol; 2014; 1169():45-53. PubMed ID: 24957228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.