These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26295419)

  • 1. Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces.
    Pastore M; Angelis FD
    J Phys Chem Lett; 2011 Jun; 2(11):1261-7. PubMed ID: 26295419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized TiO₂ heterointerfaces: disentangling the effects of aggregation, solvation, and surface protonation.
    Marotta G; Lobello MG; Anselmi C; Barozzino Consiglio G; Calamante M; Mordini A; Pastore M; De Angelis F
    Chemphyschem; 2014 Apr; 15(6):1116-25. PubMed ID: 24402779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast dynamics of the indoline dye D149 on electrodeposited ZnO and sintered ZrO2 and TiO2 thin films.
    Oum K; Lohse PW; Flender O; Klein JR; Scholz M; Lenzer T; Du J; Oekermann T
    Phys Chem Chem Phys; 2012 Nov; 14(44):15429-37. PubMed ID: 23070060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of local Stark effect observed for a complete D149 dye-sensitized solar cell.
    Burdziński G; Karolczak J; Ziółek M
    Phys Chem Chem Phys; 2013 Mar; 15(11):3889-96. PubMed ID: 23400026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation.
    Pastore M; Angelis FD
    ACS Nano; 2010 Jan; 4(1):556-62. PubMed ID: 20020758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can silicon substituted metal-free organic dyes achieve better efficiency compared to silicon free organic dyes? A computational study.
    Biswas AK; Das A; Ganguly B
    Phys Chem Chem Phys; 2015 Dec; 17(46):31093-100. PubMed ID: 26535472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells.
    Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():232-8. PubMed ID: 24866090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.
    Jakubikova E; Bowman DN
    Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N719- and D149-sensitized 3D hierarchical rutile TiO2 solar cells--a comparative study.
    Lin J; Heo YU; Nattestad A; Shahabuddin M; Yamauchi Y; Kim JH
    Phys Chem Chem Phys; 2015 Mar; 17(11):7208-13. PubMed ID: 25690882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell.
    Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():646-54. PubMed ID: 24513712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion efficiency versus sensitizer for electrospun TiO(2) nanorod electrodes in dye-sensitized solar cells.
    Jose R; Kumar A; Thavasi V; Ramakrishna S
    Nanotechnology; 2008 Oct; 19(42):424004. PubMed ID: 21832664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical investigations on the effect of dodecyloxy chromophore in 4-amino stilbene sensitizer for DSSCs.
    Senthilkumar P; Nithya C; Anbarasan PM
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():15-21. PubMed ID: 24291449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A key discovery at the TiO2/dye/electrolyte interface: slow local charge compensation and a reversible electric field.
    Yang W; Pazoki M; Eriksson AI; Hao Y; Boschloo G
    Phys Chem Chem Phys; 2015 Jul; 17(26):16744-51. PubMed ID: 26061451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Dye-Sensitized Solar Cells: From Theory to Experiment.
    Le Bahers T; Pauporté T; Lainé PP; Labat F; Adamo C; Ciofini I
    J Phys Chem Lett; 2013 Mar; 4(6):1044-50. PubMed ID: 26291375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of phenothiazine-triphenylamine-based organic dyes with different π spacers for dye-sensitized solar cells.
    Chen X; Jia C; Wan Z; Zhang J; Yao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():282-9. PubMed ID: 24398472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can nitro groups really anchor onto TiO2? Case study of dye-to-TiO2 adsorption using azo dyes with NO2 substituents.
    Zhang L; Cole JM
    Phys Chem Chem Phys; 2016 Jul; 18(28):19062-9. PubMed ID: 27356762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.
    De Angelis F
    Acc Chem Res; 2014 Nov; 47(11):3349-60. PubMed ID: 24856085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.